• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The relationship between (16,6,3)-balanced incomplete block designs and (25,12) self-orthogonal codes

Nasr Esfahani, Navid 21 August 2014 (has links)
Balanced Incomplete Block Designs and Binary Linear Codes are two combinatorial designs. Due to the vast application of codes in communication the field of coding theory progressed more rapidly than many other fields of combinatorial designs. On the other hand, Block Designs are applicable in statistics and designing experiments in different fields, such as biology, medicine, and agriculture. Finding the relationship between instances of these two designs can be useful in constructing instances of one from the other. Applying the properties of codes to corresponding instances of Balanced Incomplete Block Designs has been used previously to show the non-existence of some designs. In this research the relationship between (16,6,3)-designs and (25,12) codes was determined.
2

Topics in Random Walks

Montgomery, Aaron 03 October 2013 (has links)
We study a family of random walks defined on certain Euclidean lattices that are related to incidence matrices of balanced incomplete block designs. We estimate the return probability of these random walks and use it to determine the asymptotics of the number of balanced incomplete block design matrices. We also consider the problem of collisions of independent simple random walks on graphs. We prove some new results in the collision problem, improve some existing ones, and provide counterexamples to illustrate the complexity of the problem.

Page generated in 0.1107 seconds