1 |
A fine-scale lidar-based habitat suitability mapping methodology for the marbled murrelet (Brachyramphus marmoratus) on Vancouver Island, British ColumbiaClyde, Georgia Emily 18 April 2017 (has links)
The marbled murrelet (Brachyramphus marmoratus) is a Threatened seabird with very particular nesting requirements. They choose to nest almost exclusively on mossy platforms, provided by large branches or deformities, in the upper canopies of coniferous old-growth trees located within 50 km of the ocean. Due primarily to a loss of this nesting habitat, populations in B.C. have seen significant decline over the past several decades. As such, reliable spatial habitat data are required to facilitate efficient management of the species and its remaining habitats. Current habitat mapping methodologies are limited by their qualitative assessment of habitat attributes and the large, stand-based spatial scale at which they classify and map habitat. This research aimed to address these limitations by utilizing light detection and ranging (lidar) technologies to develop an object-based habitat mapping methodology capable of quantitatively mapping habitat suitability at the scale of an individual tree on Northern Vancouver Island, British Columbia (B.C.). Using a balanced random forest (BRF) classification algorithm and in-field habitat suitability data derived from low-level aerial surveys (LLAS), a series of lidar-derived terrain and canopy descriptors were used to predict the habitat suitability (Rank 1: Very High Suitability – Rank 6: Nil Suitability) of lidar-derived individual tree objects. The classification model reported an overall classification accuracy of 71%, with Rank 1 – Rank 5 reporting individual class accuracies of 90%, 86%, 74%, 67%, and 98%, respectively. Evaluation of the object-based predictive habitat suitability maps provided evidence that this new methodology is capable of identifying and quantifying within-stand habitat variability at the scale of an individual tree. This improved quantification provides a superior level of habitat differentiation currently unattainable using existing habitat mapping methods. As the total amount of suitable nesting habitat in B.C. is expected to continue to decline, this improved quantification is a critical advancement for strategic managers, facilitating improved habitat and species management. / Graduate / 2018-04-07 / 0329 / 0368 / 0478 / gclyde@uvic.ca
|
2 |
Enhancing human activity recognition via analysis of hexoskin sensor data and deep learning techniquesSaini, Anuj 05 1900 (has links)
Les technologies portables sont dans le processus de révolutionner le domaine de la santé en
offrant des données vitales qui assistent dans la prévention et le traitement des maladies. Les
appareils portables de la santé (HWDs), comme le vêtement biométrique de Hexoskin, sont
à la pointe de cette innovation en offrant des données physiologiques détaillées et en ayant
un impact significatif dans les domaines comme l’analyse de la démarche et la surveillance
des activités.
Le but de cette étude est de développer des modèles précis de machine learning et deep
learning capables de prédire les activités humaines à l’aide de données provenant des technologies
portables Hexoskin. Ceci implique l’analyse des données des capteurs comme la
fréquence cardiaque et les mouvements du torse dans l’optique de prédire avec précision les
activités telles que la marche, la course et le sommeil.
Cette étude a fait l’objet d’une collecte de données des capteurs de 52 participants sur une
période de deux semaines à l’aide des technologies portables Hexoskin. Plusieurs techniques
avancées d’ingénierie des caractéristiques ont été appliquées pour extraire des caractéristiques
critiques comme les accélérations X, Y et Z. Plusieurs algorithmes de machine learning tels
que le Balanced Random Forest (BRF), XGradient Boosting et LSTM (sans ingénierie des
caractéristiques) ont été utilisés pour l’analyse des données.
Les modèles ont été entraînés et testés sur des données provenant d’Hexoskin pour évaluer
leurs performances basées sur l’exactitude, le rappel, la précision et du score F1. Cette
étude démontre que les technologies portables Hexoskin, couplées à des modèles de machine
learning sophistiqués, pouvaient prédire avec une grande précision les activités humaines.
La recherche valide l’efficacité des technologies portables Hexoskin dans la reconnaissance
des activités humaines, en mettant en lumière leur potentielle utilisation dans le domaine de
la santé, l’analyse de la démarche, et la surveillance des activités. Cette étude contribue de
manière significative à l’amélioration des standards de soins médicaux et ouvre des nouvelles
perspectives pour le diagnostic et le traitement des conditions liées à la démarche. L’intégration
des technologies Hexoskin avec des algorithmes de machine learning représente un pas
en avant significatif dans la surveillance continue et en temps réel des maladies chroniques,
v
positionnant ainsi Hexoskin comme un outil fiable pour une multitude d’applications dans
le domaine de la santé. / Wearable technologies are revolutionizing the healthcare field by providing vital data that assists in the prevention and treatment of diseases. Health wearable devices (HWDs), like the Hexoskin biometric garment, are at the forefront of this innovation by offering detailed physiological data and significantly impacting fields such as gait analysis and activity monitoring.
The aim of this study is to develop accurate machine learning and deep learning models capable of predicting human activities using data from Hexoskin wearable technologies. This involves analyzing sensor data such as heart rate and torso movements to accurately predict activities such as walking, running, and sleeping.
This study involved collecting sensor data from 52 participants over a two-week period using Hexoskin wearable technologies. Several advanced feature engineering techniques were applied to extract critical features such as X, Y, and Z accelerations. Multiple machine learning algorithms, such as Balanced Random Forest (BRF), XGradient Boosting, and LSTM (without feature engineering), were used for data analysis.
The models were trained and tested on data from Hexoskin to evaluate their performance based on accuracy, recall, precision, and F1 score. This study demonstrates that Hexoskin wearable technologies, coupled with sophisticated machine learning models, can predict human activities with high accuracy.
The research validates the effectiveness of Hexoskin wearable technologies in human activity recognition, highlighting their potential use in healthcare, gait analysis, and activity monitoring. This study significantly contributes to improving medical care standards and opens new perspectives for the diagnosis and treatment of gait-related conditions. The integration of Hexoskin technologies with machine learning algorithms represents a significant step forward in the continuous and real-time monitoring of chronic diseases, positioning Hexoskin as a reliable tool for a multitude of applications in the healthcare field.
|
Page generated in 0.0763 seconds