• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Portevin-Le Chatelier Effect and Shear Band Formation in AA5754 Aluminum Alloy

Halim, Herdawandi 09 1900 (has links)
<p> The use of AA 5754 Al-Mg alloy for automotive applications is limited by its rapid shear failure process, due to shear banding. This failure mechanism is further complicated by the presence of inhomogeneous plastic deformation, so-called Portevin-Le Chatelier (PLC) effect, during deformation. Therefore, the purpose of this study was primarily to investigate the impact of Portevin-Le Chatelier (PLC) banding towards shear banding in this commercial alloy. The second objective was to study the PLC banding as a function of prior deformation under positive strain rate sensitivity condition.</p> <p> The experimental work involved pre-straining experiments coupled with a non-contact strain measurement technique. Pre-straining experiments were carried out by deforming the sample at 223 K, at which the PLC effect is significantly suppressed, up to a prescribed amount of true strain prior to room temperature testing. A non-contact strain measurement technique, based on digital image correlation (DIC), was utilized in order to observe PLC band behavior during tensile tests at room temperature and subsequently to measure the amount of plastic strain carried within the band.</p> <p> The results showed the appearance of random nucleation deformation bands, associated with type B PLC banding, with short distance propagation during constant strain rate tensile test at room temperature. A change in the nature of PLC banding, marked by distinct band propagation, was observed once a critical amount of pre-strain is given. However, there is no evidence of a relationship between two existing phenomena, PLC banding and shear banding, in this alloy.</p> / Thesis / Master of Applied Science (MASc)
2

Numerical Modeling of Plasticity in FCC Crystalline Materials Using Discrete Dislocation Dynamics

Hosseinzadeh Delandar, Arash January 2015 (has links)
Plasticity in crystalline solids is controlled by the microscopic line defects known as “dislocations”. Decisive role of dislocations in crystal plasticity in addition to fundamentals of plastic deformation are presented in the current thesis work. Moreover, major features of numerical modeling method “Discrete Dislocation Dynamics (DDD)” technique are described to elucidate a powerful computational method used in simulation of crystal plasticity. First part of the work is focused on the investigation of strain rate effect on the dynamic deformation of crystalline solids. Single crystal copper is chosen as a model crystal and discrete dislocation dynamics method is used to perform numerical uniaxial tensile test on the single crystal at various high strain rates. Twenty four straight dislocations of mixed character are randomly distributed inside a model crystal with an edge length of 1 µm subjected to periodic boundary conditions. Loading of the model crystal with the considered initial dislocation microstructure at constant strain rates ranging from 103 to 105s1 leads to a significant strain rate sensitivity of the plastic flow. In addition to the flow stress, microstructure evolution of the sample crystal demonstrates a considerable strain rate dependency. Furthermore, strain rate affects the strain induce microstructure heterogeneity such that more heterogeneous microstructure emerges as strain rate increases. Anisotropic characteristic of plasticity in single crystals is investigated in the second part of the study. Copper single crystal is selected to perform numerical tensile tests on the model crystal along two different loading directions of [001] and [111] at two high strain rates. Effect of loading orientation on the macroscopic behavior along with microstructure evolution of the model crystal is examined using DDD method. Investigation of dynamic response of single crystal to the mechanical loading demonstrates a substantial effect of loading orientation on the flow stress. Furthermore, plastic anisotropy is observed in dislocation density evolution such that more dislocations are generated as straining direction of single crystal is changed from [001] to [111] axis. Likewise, strain induced microstructure heterogeneity displays the effect of loading direction such that more heterogeneous microstructure evolve as single crystal is loaded along [111] direction. Formation of slip bands and consequently localization of plastic deformation are detected as model crystal is loaded along both directions. / <p>QC 20151015</p>

Page generated in 0.1124 seconds