• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 14
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 67
  • 67
  • 19
  • 13
  • 13
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Structure, hormonal regulation and chromosomal location of genes encoding barley (1-4)-B-xylan endohydrolases / by Mitali Banik.

Banik, Mitali January 1996 (has links)
Bibliography: leaves 127-166. / xvi, 166, [64] leaves, [11] leaves of plates : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This study describes the isolation, sequencing and characterization of two cDNAs encoding barley (1-4)-B-xylanase isoenzymes X-I and X-II and the gene corresponding to isoenzyme X. The results of genomic Southern blot analyses indicate that the barley (1-4)-B-xylanase gene family consists of at least 3 genes which are mapped to a single locus on the long arm of chromosome 7(5H). The cDNA is used to monitor tissue-specific expression, developmental regulation and hormonal control of the (1-4)-B-xylanase genes. / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 1997
52

Genetic and molecular analysis of resistance to rust diseases in barley

Golegaonkar, Prashant G January 2007 (has links)
Doctor of Philosophy / The responses of 92 barley genotypes to selected P. hordei pathotypes was assessed in greenhouse tests at seedling growth stages and in the field at adult plant growth stages to determine known or unknown resistances. On the basis of multipathotype tests, 35 genotypes were postulated to carry Rph2, Rph4, Rph5, Rph12, RphCantala alone or combinations of Rph2 + Rph4 and Rph1 + Rph2, whereas 52 genotypes lacked detectable seedling resistance to P. hordei. Five genotypes carried seedling resistance that was effective to all pathotypes tested, of which four were believed to carry uncharacterised resistance based on pedigree information. Field tests at adult plant growth stages indicated that while 28 genotypes were susceptible, 57 carried uncharacterised APR to P. hordei. Pedigree analysis indicated that APR in the test genotypes could have been derived from three different sources. The resistant responses of seven cultivars at adult plant growth stages were believed to be due to the presence of seedling resistance effective against the field pathotypes. Genetic studies conducted on 10 barley genotypes suggested that ‘Vada’, ‘Nagrad’, ‘Gilbert’, ‘Ulandra (NT)’ and ‘WI3407’ each carry one gene providing adult plant resistance to P. hordei. Genotypes ‘Patty’, ‘Pompadour’ ‘Athos’, ‘Dash’ and ‘RAH1995’ showed digenic inheritance of APR at one field site and monogenic inheritance at a second. One of the genes identified in each of these cultivars provided high levels of APR and was effective at both field sites. The second APR gene was effective only at one field site, and it conferred low levels of APR. Tests of allelism between resistant genotypes confirmed a common APR gene in all genotypes with the exception of ‘WI3407’, which based on pedigree information was genetically distinct from the gene common in ‘Vada’, ‘Nagrad’, ‘Patty’, ‘RAH1995’ and ‘Pompadour’. An incompletely dominant gene, Rph14, identified previously in an accession of Hordeum vulgare confers resistance to all known pathotypes of P. hordei in Australia. The inheritance of Rph14 was confirmed using 146 and 106 F3 lines derived from the crosses ‘Baudin’/ ‘PI 584760’ (Rph14) and ‘Ricardo’/‘PI 584760’ (Rph14), respectively. Bulk segregant analysis on DNA from the parental genotypes and resistant and susceptible DNA bulks from F3 lines using diversity array technology (DArT) markers located Rph14 to the short arm of chromosome 2H. Polymerase chain reaction (PCR) based marker analysis identified a single simple sequence repeat (SSR) marker, Bmag692, linked closely to Rph14 at a map distance of 2.1 and 3.8 cM in the populations ‘Baudin’/ ‘PI 584760’and ‘Ricardo’/‘PI 584760’, respectively. Seedlings of 62 Australian and two exotic barley cultivars were assessed for resistance to a variant of Puccinia striiformis, referred to as BGYR, which causes stripe rust on several wild Hordeum species and some genotypes of cultivated barley. With the exception of six Australian barley cultivars and an exotic cultivar, all displayed resistance to the pathogen. Genetic analyses of six Australian barley cultivars and the Algerian barley ‘Sahara 3771’, suggested that they carried either one or two major seedling resistance genes to the pathogen. A single recessive seedling resistance gene, Bgyr1, identified in ‘Sahara 3771’ was located on the long arm of chromosome 7H and flanked by restriction fragment length polymorphism (RFLP) markers wg420 and cdo347 at genetic distances of 12.8 and 21.9 cM, respectively. Mapping resistance to BGYR at adult plant growth stages using a doubled haploid population derived from the cross ‘Clipper’/‘Sahara 3771’ identified two major QTLs on the long arms of chromosomes 3H and 7H that explained 26 and 18% of total phenotypic variation, respectively. The QTL located on chromosome 7HL corresponded to the seedling resistance gene Bgyr1. The second QTL was concluded to correspond to a single adult plant resistance gene designated Bgyr2, originating from cultivar ‘Clipper’.
53

Towards cloning Yd2 : a barley resistance gene to barley yellow dwarf virus

King, Brendon James. January 2001 (has links) (PDF)
Errata attached to inside front cover. Bibliography: leaves [156-188]
54

Genetic characterisation and QTL mapping of zinc nutrition in barley (Hordeum vulgare)

Lonergan, Paul Francis. January 2001 (has links) (PDF)
Includes bibliographical references (leaves 192-211). Maps major genes or quantitative trait loci associated with zinc nutrition in the vegetative and reproductive tissues of barley (Hordeum vulgare)
55

Genetics of boron tolerance in barley / by Mandy Jane Jenkin.

Jenkin, Mandy Jane January 1993 (has links)
1 v. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, Waite Agricultural Research Institute, 1993
56

Genetic characterisation and QTL mapping of zinc nutrition in barley (Hordeum vulgare) / Paul Francis Lonergan. / Genetic characterisation and quantitative trait loci mapping of zinc nutrition in barley (Hordeum vulgare)

Lonergan, Paul F. January 2001 (has links)
Includes bibliographical references (leaves 192-211). / x, 211 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Maps major genes or quantitative trait loci associated with zinc nutrition in the vegetative and reproductive tissues of barley (Hordeum vulgare) / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 2001
57

Characterisation and mapping of chromosome regions associated with improved growth and grain yield of barley on sandy soils of low fertility / by Nigel Richard Long.

Long, Nigel R. January 2003 (has links)
"August, 2003" / Includes bibliographical references (leaves 260-292) / v, 294 leaves : ill. (some col.), plates (col.), maps (col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, School of Agriculture and Wine, 2003
58

Genetic and molecular analysis of resistance to rust diseases in barley

Golegaonkar, Prashant G January 2007 (has links)
Doctor of Philosophy / The responses of 92 barley genotypes to selected P. hordei pathotypes was assessed in greenhouse tests at seedling growth stages and in the field at adult plant growth stages to determine known or unknown resistances. On the basis of multipathotype tests, 35 genotypes were postulated to carry Rph2, Rph4, Rph5, Rph12, RphCantala alone or combinations of Rph2 + Rph4 and Rph1 + Rph2, whereas 52 genotypes lacked detectable seedling resistance to P. hordei. Five genotypes carried seedling resistance that was effective to all pathotypes tested, of which four were believed to carry uncharacterised resistance based on pedigree information. Field tests at adult plant growth stages indicated that while 28 genotypes were susceptible, 57 carried uncharacterised APR to P. hordei. Pedigree analysis indicated that APR in the test genotypes could have been derived from three different sources. The resistant responses of seven cultivars at adult plant growth stages were believed to be due to the presence of seedling resistance effective against the field pathotypes. Genetic studies conducted on 10 barley genotypes suggested that ‘Vada’, ‘Nagrad’, ‘Gilbert’, ‘Ulandra (NT)’ and ‘WI3407’ each carry one gene providing adult plant resistance to P. hordei. Genotypes ‘Patty’, ‘Pompadour’ ‘Athos’, ‘Dash’ and ‘RAH1995’ showed digenic inheritance of APR at one field site and monogenic inheritance at a second. One of the genes identified in each of these cultivars provided high levels of APR and was effective at both field sites. The second APR gene was effective only at one field site, and it conferred low levels of APR. Tests of allelism between resistant genotypes confirmed a common APR gene in all genotypes with the exception of ‘WI3407’, which based on pedigree information was genetically distinct from the gene common in ‘Vada’, ‘Nagrad’, ‘Patty’, ‘RAH1995’ and ‘Pompadour’. An incompletely dominant gene, Rph14, identified previously in an accession of Hordeum vulgare confers resistance to all known pathotypes of P. hordei in Australia. The inheritance of Rph14 was confirmed using 146 and 106 F3 lines derived from the crosses ‘Baudin’/ ‘PI 584760’ (Rph14) and ‘Ricardo’/‘PI 584760’ (Rph14), respectively. Bulk segregant analysis on DNA from the parental genotypes and resistant and susceptible DNA bulks from F3 lines using diversity array technology (DArT) markers located Rph14 to the short arm of chromosome 2H. Polymerase chain reaction (PCR) based marker analysis identified a single simple sequence repeat (SSR) marker, Bmag692, linked closely to Rph14 at a map distance of 2.1 and 3.8 cM in the populations ‘Baudin’/ ‘PI 584760’and ‘Ricardo’/‘PI 584760’, respectively. Seedlings of 62 Australian and two exotic barley cultivars were assessed for resistance to a variant of Puccinia striiformis, referred to as BGYR, which causes stripe rust on several wild Hordeum species and some genotypes of cultivated barley. With the exception of six Australian barley cultivars and an exotic cultivar, all displayed resistance to the pathogen. Genetic analyses of six Australian barley cultivars and the Algerian barley ‘Sahara 3771’, suggested that they carried either one or two major seedling resistance genes to the pathogen. A single recessive seedling resistance gene, Bgyr1, identified in ‘Sahara 3771’ was located on the long arm of chromosome 7H and flanked by restriction fragment length polymorphism (RFLP) markers wg420 and cdo347 at genetic distances of 12.8 and 21.9 cM, respectively. Mapping resistance to BGYR at adult plant growth stages using a doubled haploid population derived from the cross ‘Clipper’/‘Sahara 3771’ identified two major QTLs on the long arms of chromosomes 3H and 7H that explained 26 and 18% of total phenotypic variation, respectively. The QTL located on chromosome 7HL corresponded to the seedling resistance gene Bgyr1. The second QTL was concluded to correspond to a single adult plant resistance gene designated Bgyr2, originating from cultivar ‘Clipper’.
59

Identification and expression analyses of cystolic glutamine synthetase genes in barley (Hordeum vulgare L.)

Goodall, Andrew James January 2013 (has links)
Glutamine synthetase (GS) is a key enzyme in nitrogen (N) assimilation, especially during seed development. This thesis has identified three cytosolic GS isoforms (HvGS1) in barley (Hordeum vulgare L. cv Golden Promise). The quantitation of gene expression, isoform localisation and response to N supply has revealed that each gene plays a non-redundant role in different tissues throughout seedling development. The localisation of HvGS1_1 in vascular cells of different tissues, combined with its abundance in the stem and its response to changes in N supply, indicate that HvGS1_1 is important in N transport and remobilisation. HvGS1_1 is located on chromosome 6H at 72.54 cM, close to the marker HVM074 which is associated with a major quantitative trait locus (QTL) for grain protein content (GPC). HvGS1_1 may be a potential candidate gene to manipulate barley GPC. HvGS1_2 mRNA was localised to the leaf mesophyll cells, in both the cortex and the pericycle of roots and was the dominant HvGS1 isoform in these tissues. HvGS1_2 expression increased in the leaves with an increasing supply of N, suggesting that its role is in the primary assimilation of N. HvGS1_3 was specifically and predominantly localised in the grain, being highly expressed throughout grain development. HvGS1_3 expression increased specifically in the roots of plants grown on high NH₄⁺ suggesting that it has a primary role in grain N assimilation and also in the protection from ammonium toxicity in roots. The expression of the HvGS1 genes is directly correlated with both protein and enzymatic activity, indicating that transcriptional regulation is of prime importance in the control of GS activity in barley. Analysis of 15 different barley cultivars found no correlation between HvGS expression and various desirable attributes. Transgenics which over-express and silence individual HvGS1 isoforms have been produced and confirmed, to analyse for changes in beneficial traits.
60

Mapping and survey sequencing of Dn resistance genes in Triticum aestivum L.

Bierman, Anandi 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015 / ENGLISH ABSTRACT : Diuraphis noxia Kurdjumov (Russian Wheat Aphid; RWA) is a pest of wheat and barley that has spread from its home range in the fertile crescent to most wheat producing countries except Australia. Since its first introduction to South Africa and the USA in the late 20th century, breeding programs for wheat phenotypes resistant to the aphid were put in place. Conventional breeding practices rely on phenotypic screening to verify traits carried by offspring and genetic tools such as marker assisted selection (MAS) have greatly aided this process in speed and accuracy. The size and complexity of the wheat genome, its allopolyploid nature and repetitive elements have, however, posed a challenge to studies on the genetics of this cereal crop. Many studies have focused on chromosome 3B which is the largest of the wheat chromosomes and easily separated from the redundant genomic background by techniques such as flow cytometry. The similarity in size of the remaining chromosomes however, limits the application of flow cytometry to their isolation. Databases such as Grain-Genes (http://wheat.pw.usda.gov/GG2/index.shtml) house marker data from various mapping studies for all wheat chromosomes and in 2014 the International Wheat Genome Sequencing Consortium (IWGSC) completed the draft genome sequence of wheat categorized by chromosome. Sources of resistance (Dn resistance genes) against RWA are located on chromosome 7D. but despite the marker and sequence data available currently, mapping studies specific for the Dn resistance genes are few. Additionally, sequence data available is derived from cultivars susceptible to RWA and is not comprehensively annotated and assembled in many cases. In this study, we demonstrate a novel, combined approach to isolate and characterize the Dn resistance genes through the use of a genetic map constructed from Amplified Fragment Length Polymorphism (AFLP), Expressed Sequence Tag (EST) and microsatellite markers and a physical map constructed from Next Generation Sequencing (NGS) data of ditelosomic chromosomes (7DS and 7DL) isolated by microdissection on the PALM microbeam system. A 122.8 cM genetic map was produced from 38 polymorphic AFLP markers and two ESTs with the microsatellite Xgwm111 as anchor to related genetic maps. Through comparison to maps available on GrainGenes the location of the Dn1 resistance gene was narrowed down to a deletion bin (7DS5-0.36-0.62) on the short arm of chromosome 7D with an AFLP marker (E-ACT/M-CTG_0270.84) mapping closely at 3.5 cM and two ESTs mapping at 15.3 cM and 15.9 cM from Dn1. Isolation of individual chromosome arms 7DS and 7DL using the PALM Microbeam system allowed sequencing of the chromosome without the redundancy of the remainder of the hexaploid genome. Through isolating the chromosome arms in this way, a >80-fold reduction in genome size was achieved as well as a major reduction in repetitive elements. Analysis of the sequencing data confirmed that 7DL is the physically shorter arm of the chromosome though it contains the majority of protein coding sequences. / AFRIKAANSE OPSOMMING : Diuraphis noxia Kurdjumov (Russiese koring-luis; RWA) is « pes wat op koring en gars voorkom. Die pes het vanaf sy tuiste in die midde Ooste na meeste koringproduserende lande behalwe Australië versprei. Sedert die eerste bekendstelling van RWA in Suid Afrika en die VSA in die vroeë 20ste eeu is teelprogramme ten gunste van koring lyne met weerstand teen RWA begin. Tradisionele teelprogramme maak op fisieise observasie van die fenotipe staat om te verifieer of plante in die nageslag die gewenste eienskap dra. Genetiese metodes soos merkerondersteunde seleksie (MAS) versnel hierdie selekteringsproses grootliks. Die grootte en kompleksiteit van die koring genoom asook die polyploïde en herhalende natuur daarvan is « groot hindernis vir genetiese studies van hierdie graangewas. Baie studies het op chromosoom 3B gefokus wat die grootste van die koring chromosome is en dus maklik vanaf die res van die oorbodige genomiese agtergond deur tegnieke soos vloeisitometrie geskei word. Die ooreenkoms in grootte tussen die res van die chromosome bemoeilik die toepassing van vloeisitometrie om hulle te isoleer. Databasisse soos GrainGenes (http://wheat.pw.usda.gov/GG2/index.shtml) bevat merker data vanaf verskeie karterings-studies vir al die chromosome en in 2014 het die "International Wheat Genome Sequencing Consortium"(IWGSC) die voorlopige basispaarvolgorde van die koring genoom bekendgestel, gekategoriseer volgens chromosoom. Weerstandsbronne (Dn weerstandsgene) teen RWA kom meestal op chromosoom 7D voor. Ten spyte van merker en basispaarvolgorde data tans beskikbaar is karterings-studies spesifiek tot die Dn gene skaars en basispaarvolgorde data is vanaf kultivars afkomstig wat nie weerstandbiedend teen RWA is nie en waarvan die annotasie en samestelling baie keer nie goed is nie. In hierdie studie demonstreer ons « nuwe, gekombineerde aanslag om die Dn weerstandsgene te isoleer en karakteriseer deur van « genetiese kaart opgestel met "Amplified Fragment Length Polymorphism"(AFLP), "Expressed Sequence Tag"(EST) en mikrosatelliet merkers asook « fisiese kaart saamgestel deur die volgende-generasiebasispaarvolgordebepaling van ditelosomiese chromosome (7DS en 7DL) geïsoleer deur mikrodisseksie met die "PALM Microbeam"sisteem gebruik te maak. « Genetiese kaart van 122.8 cM was met 38 polimorfiese AFLP merkers en twee EST merkers geskep. Die mikrosatelliet, Xgwm111, is ook ingesluit en het as anker vir verwante genetiese-kaarte gedien. Deur vergelyking met genetiese-kaarte op GrainGenes is die posisie van die Dn1 weerstandsgeen vernou na « delesie bin (7DS5-0.36-0.62) op die kort arm van chromosoom 7D met « AFLP merker (EACT/ M-CTG_0270.84) wat ongeveer 3.5 cM vanaf die geen karteer. Die twee EST merkers is 15.3 cM en 15.9 cM vanaf die geen gekarteer. Isolering van die individuele chromosoom arms, 7DS en 7DL, deur van die "PALM Microbeam"sisteem gebruik te maak het basispaarvolgordebepaling van die chromosoom toegelaat sonder die oortolligheid van die res van die hexaploïde genoom. Deur die chromosoom so te isoleer is « >80-maal verkleining in genoom grootte bereik insluitend « groot reduksie in herhalende elemente. Analise van die data vanaf basispaarvolgordebepaling het bevestig dat chromosoom 7D die fisiese kleiner chromosoom is maar dat dit die meerderheid van proteïn koderende basispaarvolgordes bevat.

Page generated in 0.1153 seconds