• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microporous Membrane-based Co-culture of Human Embryonic Stem Cells

Albert, Kelsey Morgan 01 January 2007 (has links)
Transwell inserts with microporous membranes, available from multiple commercial sources, have been widely used for various mammalian cell culture applications, including the reduction of cell culture mixing. In this study, we examined the feasibility and functionality of using this technology for separating human embryonic stem cells (hESCs) from their respective feeder cells. We found that when hESCs were propagated on transwell inserts positioned directly above feeder cells grown in a separate dish, the hESCs could be maintained in an undifferentiated state for over 10 passages with no change in their basic pluripotent characteristics. In parallel with our transwell insert experiments, we also evaluated the ability of a new defined, xeno-free medium, HEScGRO™, to enhance the animal-free characteristics of the transwell insert-based culture system. Results from our studies demonstrate that HEScGRO™ medium assists in maintaining the pluripotent characteristics of hESCs propagated in the transwell insert- based culture system. These combined results represent a significant development in properly segregating stem cells from their feeders, thus eliminating cell mixing, contamination, and providing the cells with a superior environment for nourishment and controlled self-renewal. Overall, this development in hESC propagation could have wide-reaching applications for self-renewal and differentiation studies within the field of stem cell biology.
2

Influence of Rock Boundary Conditions on Behaviour of Arched and Flat Cemented Paste Backfill Barricade Walls

Cheung, Andrew 21 November 2012 (has links)
Current design of cemented paste backfill (CPB) barricades tends to be of unknown conservativeness due to limited understanding of their behaviour. Previous work done to characterize barricade response has not accounted for the effects of the surrounding rock stiffness, which can have significant impact on the development of axial forces which enhance capacity via compressive membrane action. Parametric analyses were performed with the finite element analysis program Augustus-2 to determine the effects of various material and geometric properties on barricade capacity. Equations based on Timoshenko and Boussinesq solutions were developed to model rock stiffness effects based on boundary material properties. An iterative simulation process was used to account for secondary moment effects as a proof of concept. It was found that, for a range of typical rock types, barricade capacity varied significantly. The commonly made design assumption of a fully rigid boundary resulted in unconservative overpredictions of strength.
3

Influence of Rock Boundary Conditions on Behaviour of Arched and Flat Cemented Paste Backfill Barricade Walls

Cheung, Andrew 21 November 2012 (has links)
Current design of cemented paste backfill (CPB) barricades tends to be of unknown conservativeness due to limited understanding of their behaviour. Previous work done to characterize barricade response has not accounted for the effects of the surrounding rock stiffness, which can have significant impact on the development of axial forces which enhance capacity via compressive membrane action. Parametric analyses were performed with the finite element analysis program Augustus-2 to determine the effects of various material and geometric properties on barricade capacity. Equations based on Timoshenko and Boussinesq solutions were developed to model rock stiffness effects based on boundary material properties. An iterative simulation process was used to account for secondary moment effects as a proof of concept. It was found that, for a range of typical rock types, barricade capacity varied significantly. The commonly made design assumption of a fully rigid boundary resulted in unconservative overpredictions of strength.

Page generated in 0.0479 seconds