• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Topology Optimization to Numerically Improve Barriers to Reverse Engineering

LeBaron, Devin Donald 15 May 2013 (has links) (PDF)
Here explored is a method by which designers can use the tool of topology optimization to numerically improve barriers to reverse engineering. Recently developed metrics, which characterize the time (T) to reverse engineer a product, enable this optimization. A key parameter use din the calculation of T is information content (K). The method presented in this thesis pursues traditional topology optimization objectives while simultaneously maximizing K, and thus T, in the resulting topology. This thesis presents new algorithms to 1) evaluate K for any topology, 2)increase K for a topology by manipulating macro-scale geometry and micro-scale crystallographic information for each element, and 3) simultaneously maximize K and minimize structural compliance(a traditional topology optimization objective). These algorithms lead designers to desirable topologies with increased barriers to reverse engineering. It is concluded that barriers to reverse engineering can indeed be increased without sacrificing the desirable structural characteristic of compliance. This has been shown through the example of a novel electrical contact for a consumer electronics product.
2

Characterization of the Initial Flow Rate of Information During Reverse Engineering

Anderson, Nicole 21 April 2011 (has links) (PDF)
The future of companies that are founded on the development of new and innovative products is threatened when competitors reverse engineer and imitate the products. If the original developers could predict how long it would take a competitor to reverse engineer a product, it may be possible for them to delay, if not prevent, that competitor's entry into the market. Metrics and measures have been developed that can estimate the time it would take an individual to reverse engineer a product. The main purpose of these metrics and measures is to help designers determine how quickly a competitor could reverse engineer a product and develop and market a competing product. A critical parameter of these metrics is the flow rate of information (how quickly information can be extracted from a product), which is a parameter unique to each individual. This thesis seeks to establish a method for creating probability distributions that could be used to select a reasonable flow rate for an individual, by using data collected on the initial flow rate of multiple individuals.
3

A Methodology for Strategically Designing Physical Products that are Naturally Resistant to Reverse Engineering

Harston, Stephen P. 13 March 2012 (has links)
Reverse engineering - defined as extracting information about a product from the product itself - is a design tactic commonly used in industry from competitive benchmarking to product imitation. While reverse engineering is a legitimate practice - as long as the product was legally obtained - innovative products are often reverse engineered at the expense of the pioneering company. However, by designing products with built-in barriers to reverse engineering, competitors are no longer able to effectively extract critical information from the product of interest. Enabling the quantification of barriers to reverse engineering, this dissertation presents a set of metrics and parameters that can be used to calculate the barrier to reverse engineer any product as well as the time required to do so. To the original designer, these numerical representations of the barrier and time can be used to strategically identify and improve product characteristics so as to increase the difficulty and time to reverse engineer them. On the other hand, these quantitative measures enable competitors who reverse engineer original designs to focus their efforts on products that will result in the greatest return on investment. In addition to metrics that estimate the reverse engineering barrier and time, this dissertation also presents a methodology to strategically plan for, select, design, and implement reverse engineering barriers. The methodology presented herein considers barrier development cost, barrier effectiveness in various product components, impact on performance, and return on investment. This process includes sensitivity analysis, modeling of the return on investment, and exploration of multiobjective design spaces. The effectiveness of the presented methodology is demonstrated by making a solar-powered unmanned aerial vehicle difficult to reverse engineer. In the example, the propeller is selected to be the critical component where a series of voids are introduced to decrease the propeller weight and increase the flutter speed (a desirable attribute in propellers). Our tenet is that the use of such a framework contributes greatly to the sustainability of technological, economical, and security advantages enjoyed by those who developed the technology. Designers benefit because (i) products do not readily disclose trade secrets, (ii) competitive advantages can be maintained by impeding competitors from reverse engineering and imitating innovative products, and (iii) the return on investment can be increased.

Page generated in 0.1492 seconds