• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Role for a Novel β-catenin Binding Protein in Epithelial-mesenchymal Transitions and Breast Cancer Progression

Sikorski, Lindsay 02 June 2011 (has links)
Epithelial-mesenchymal transition (EMT) has a critical role in tumor progression and has been correlated with the basal-like subtype of human breast cancers. Here I report a novel β-catenin binding protein, which I have shown to be expressed in invasive breast cancer and hypothesized to have a role in breast tumor progression. In normal breast tissue, expression is restricted to the myoepithelium while in breast cancer the expression pattern is similar to smooth muscle actin and vimentin. I have demonstrated that silencing of this protein in breast tumor cells reduces migration by over 50 percent. Furthermore, I have identified this β-catenin binding protein as a target of the Snail EMT network and have demonstrated this protein to be a marker of basal-like carcinomas. These results define a role for this novel protein in EMT, as a marker for the basal subtype, and a promising therapeutic target for metastasis inhibition.
2

A Role for a Novel β-catenin Binding Protein in Epithelial-mesenchymal Transitions and Breast Cancer Progression

Sikorski, Lindsay 02 June 2011 (has links)
Epithelial-mesenchymal transition (EMT) has a critical role in tumor progression and has been correlated with the basal-like subtype of human breast cancers. Here I report a novel β-catenin binding protein, which I have shown to be expressed in invasive breast cancer and hypothesized to have a role in breast tumor progression. In normal breast tissue, expression is restricted to the myoepithelium while in breast cancer the expression pattern is similar to smooth muscle actin and vimentin. I have demonstrated that silencing of this protein in breast tumor cells reduces migration by over 50 percent. Furthermore, I have identified this β-catenin binding protein as a target of the Snail EMT network and have demonstrated this protein to be a marker of basal-like carcinomas. These results define a role for this novel protein in EMT, as a marker for the basal subtype, and a promising therapeutic target for metastasis inhibition.

Page generated in 0.0803 seconds