• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude algèbrique des mots de poids minimum des codes cycliques, méthodes d'algèbre linéaire sur les corps finis.

Augot, Daniel 02 December 1993 (has links) (PDF)
Nous étudions les mots de poids minimal des codes correcteurs d'erreurs cycliques. Les fonctions symétriques élémentaires et les fonctions puissances des localisateurs de ces mots vérifient les identités de Newton. Dans le premier chapitre celles-ci sont étudiées comme un système d'équations algébriques, dont les solutions sont étudiées par transformation de Fourier. Dans le chapitre II, le lien est fait avec les codes correcteurs d'erreurs cycliques. Sur quelques exemples, il est montré comment étudier les mots de poids minimal sur la donnée d'une base standard de l'idéal engendré par les équations de Newton. Dans le chapitre III, les relations de Newton sont utilisées d'un point de vue théorique, et des résultats sur les mots de poids minimal de certains codes BCH sont obtenus. Ces calculs se placent dans le contexte de la théorie des corps finis. Dans le chapitre IV, un algorithme est développé pour calculer une base normale sur un corps fini. Un point de vue d'algèbre linéaire est choisi, et d'autres problèmes sont abordés (calcul du polynôme minimal, de la forme de Frobenius d'une matrice, lorsque la factorisation du polynôme caractéristique est connue).

Page generated in 0.0714 seconds