Spelling suggestions: "subject:"basis"" "subject:"basic""
91 |
Petroleum geology of the Gunnedah-Bowen-Surat Basins, Northern New South Wales : stratigraphy, organic petrology and organic geochemistryOthman, Rushdy, School of Biological, Earth & Environmental Sciences, UNSW January 2003 (has links)
The three-dimensional thermal maturity pattern has been investigated and the hydrocarbon generation potential assessed for the Permian and Triassic sequences of the southern Bowen and northern Gunnedah Basins and the lower part of the overlying Jurassic Cretaceous Surat Basin sequence in northern New South Wales. An oil-source rock correlation also has been investigated in the Gunnedah Basin. Vitrinite reflectance measurements were conducted on 256 samples from 28 boreholes. A total of 50 of these samples were subjected to Rock-Eval pyrolysis analysis, and 28 samples extracted for additional organic geochemical studies (GCMS). A re-evaluation of the stratigraphy in the southern Bowen Basin and a stratigraphic correlation between that area and the northern Gunnedah Basin was also included in the study. An overpressured shaly interval has been identified as a marker bed within the lower parts of the Triassic Moolayember and Napperby Formations, in the Bowen and Gunnedah Basins respectively. Suppressed vitrinite reflectance in the Permian sequence was used as another marker for mapping the stratigraphic sequence in the southern Bowen Basin. The Permian sequence in the Bowen Basin thins to the south, and probably pinches out over the Moree High and also to the west. The coal-bearing Kianga Formation is present in the north and northeastern parts of the study area. A disconformity surface between Digby and Napperby Formations in the Gunnedah Basin is probably time-equivalent to deposition of the Clematis Group and Showgrounds Sandstone in the Bowen Basin. The Clematis Group is absent in the study area, and the Moolayember Formation considered equivalent to the Napperby Formation. Although in many cases core samples were not available, handpicking of coal or shaly materials from cuttings samples where geophysical log signatures identify these materials helped in reducing contamination from caved debris. Histogram plots of reflectance also helped where the target and caved debris were of similar lithology. Vertical profiles of the vitrinite reflectance identified suppressed intervals in the study area due to marine influence (Back Creek Group and Maules Creek Formation) and liptinite rich source organic matter (Goonbri Formation). The suppression occurs due to the perhydrous character of the preserved organic matter. High reflectance values were noted within intrusion-affected intervals, and two types of igneous intrusion profiles were identified; these are simple and complex profiles. An isoreflectance map for the non-suppressed interval at the base of the Triassic sequence in the southern Bowen Basin shows that the organic matter is mature more towards the east close to the Goondiwindi Fault, and also towards the west where the Triassic sequence directly overlies the basement. High values also occur over the Gil Gil Ridge in the middle, to the south over the Moree High, and to the north where the sequence is thicker. The reflectance gradient in the suppressed intervals is higher than in the overlying non-suppressed sequences, especially when the rank has resulted from burial depth. Tmax from Rock-Eval pyrolysis was found to be lower in the perhydrous intervals, and was high in mature and igneous intrusion-affected intervals. Based on the source potential parameters, the Permian Back Creek Group is a better source than the Kianga Formation, while the Goonbri Formation is better than the Maules Creek Formation. The Triassic Napperby Formation has a fair capacity to generate oil, and is considered a better source rock than the equivalent Moolayember Formation. The Jurassic Walloon Coal Measures is a better source than Evergreen Formation, and has the best source rock characteristics, but is immature. The Rock-Eval S1 value shows better correlation with extracted hydrocarbon compounds (saturated and aromatics) than the total extractable organic matter. This suggests that solvent extraction has a greater ability to extract NSO compounds than temperature distillation over the Rock-Eval S1 interval. Terrestrial organic matter is the main source input for the sequences studied. This has been identified from organic petrology and from the n-alkane distributions and the relatively high C29 steranes and low sterane/hopane ratios. The absence of marine biomarker signatures in the Permian marine influenced sequence, could be attributed to their dilution by overwhelming amounts of non-marine organic matter. A mainly oxic to suboxic depositional environment is inferred from trace amounts of 25-NH, BNH and TNH. This is further supported by relatively high pr/ph ratios. Although C29/C30 is generally regarded as an environmental indicator, high values were noted in intrusion-affected samples. The 22S and 20S ratios were inverted ????reaches pseudo-equilibrium???? in such rapidly heated, high maturity samples. The ratio of C24 tetracyclic terpane to C21-C26 tricyclic terpanes decreases, instead of increasing, within the Napperby Formation close to a major igneous intrusive body. The 22S ratio, which is faster in reaction than the other terpane and sterane maturity parameters, shows that the Permian sequence lies within the oil generation stage in the Bowen Basin, except for a Kianga Formation sample. The Triassic sequence is marginally mature, and the Jurassic sequence is considered immature. In the Gunnedah Basin, the Permian sequence in Bellata-1 and Bohena-1, and the Triassic sequence in Coonarah-1A, lie within the oil generation range. In the intrusion-affected high maturity samples, the ratio is reaches pseudo-equilibrium. This and other terpane and sterane maturity parameters are not lowered (suppressed) in the perhydrous intervals. The ???????? sterane ratio, however, is slowest in reaction to maturity, and variations in low maturity samples are mainly due to facies changes. Diasterane/sterane ratios, in the current study, increase with increasing TOC content up to 5% TOC, but decrease in rocks with higher TOC contents including coals. Highly mature samples, as expected, in both cases are anomalous with high ratios. Calculated vitrinite reflectance based on the method of Radke and Welte (1983), as well as MPI 1 and MPI 2, shows the best comparison to observed values. These aromatic maturity parameters are lowered within the reflectance-suppressed intervals. Oil stains in the Jurassic Pilliga Sandstone in the Bellata-1 well have been identified as being indigenous and not due to contamination. The vitrinite reflectance calculated to the oil stain suggests that the source rock should be within a late mature zone. Such high maturity levels are only recognised within intrusion-affected intervals. A close similarity between the oil stain sample and the intruded interval of the Napperby Formation is evident from the thermal maturity and biomarker content. Hydrocarbon generation and expulsion from the lower part of the Napperby Formation as a result of igneous intrusion effects is suggested as the source of the oil in this particular occurrence. Terpane and sterane maturity parameters increase with increasing burial depth in the intervals with suppressed (perhydrous) vitrinite reflectance. The generation maturity parameters also increase through intervals with perhydrous vitrinite, which suggests that hydrocarbons continue to be generated and the actual amount is increasing even though traditional rank ????????????stress???????????? maturity parameters are lowered. Accordingly, the Permian sequences in the lower part of the Bowen Basin are at least within the peak oil generation zone, and probably within late oil generation in the north and northeast of the study area. To generate significant amounts of hydrocarbon, however, the thickness of the shaly and coaly intervals in the Permian sequence is probably a critical parameter. In the Gunnedah Basin, a significant amount of hydrocarbon generation is probably only possible as a result of igneous intrusions.
|
92 |
Landscape evolution of the Umbum Creek Catchment, Western Lake Eyre, Central Australia.Waclawik, Victor G. January 2006 (has links)
Landscape evolution is important for mineral and petroleum exploration concepts, especially in dryland continental settings. This study seeks to understand the main issues and controls on landscape evolution that have produced the regolith and young sediments around the western side of Lake Eye, in the arid heart of Australia. Several methods were employed including satellite image analysis, geomorphometry, geological mapping, regolith mapping and surveying. Outcomes indicate that the underlying structural fabric of the basement has controlled the development of the surface morphology of the Umbum Creek Catchment. The arrangement of basement faults is reflected in the distribution of surface landforms and in the topography of the land surface. Significant deformation of the Etadunna and Eyre formations indicate tectonic activity occurred at the end of the Miocene and was probably related to movement in the Lake Eyre Fault Zone. Pleistocene faulting is expressed as minor blind faulting associated with pre - existing basement faults. These faults remain active and current seismic activity is driven by changes in hydrostatic pressure (hydroseismicity). The scale of Pleistocene faulting and modern seismic activity demonstrates that since the Pliocene tectonic activity has been subdued. Climate change caused landforms developed under wet conditions during the Palaeogene and Neogene to be preserved by the development of aridity in the Pleistocene. High erosion rates associated with tectonism and the onset of aridity in the Pleistocene led to topographic inversion of many features. Palaeo-Proterozoic inliers formed inselbergs, silcrete outcrops formed capstones, gypsum hardpans protected underlying sediment from erosion creating plateaux of gypsum patterned ground and palaeo-channels on the Neales Fan were eroded to make heavily armoured mounds and associated sand dunes and sand sheets. The dominant factor influencing the evolution of the landscape in the Umbum Creek Catchment was the deposition of sedimentary sulphides within the Bulldog Shale. The excess sulphur that this sediment supplied to the landscape over time created the necessary conditions for the formation of a range of landscape features that would not otherwise exist. Weathering, oxidation and leaching of the sedimentary sulphides led to the development of silcrete. Subsequent weathering and tectonic activity led to the breakdown of the silcrete and the distribution of silcrete pebbles widely across the landscape forming gibber plains. Sulphur from the Bulldog Shale continued to contribute to the landscape forming intra-formational gypsum and precipitating as gypsum hardpans. This study has implications for petroleum exploration in dryland continental settings as potential reservoirs may be affected by secondary diagenetic processes, such as the formation of gypsum or silcretes, that could act as baffles or result in reduced porosity within the reservoir. The broad-scale architecture of fluvial systems, like the Neales Fan, may not conform to traditional fan-shaped models being, instead, comprised of structurally rearranged channels. In terms of earthquake risk assessment, the identification of hydroseismicity active within the Lake Eye Basin allows for a new level of predictability of earthquake behaviour within Central Australia. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1260856 / Thesis (Ph.D.) -- School of Earth and Environmental Sciences, 2006
|
93 |
Estimating groundwater recharge from alley farming systems in the southern Murray Basin Australia / Tim Ellis.Ellis, Timothy Willson January 2001 (has links)
"June 2001" / Bibliography: p. 165-183. / xxviii, 250 p. : ill., plates (col.), maps (col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The aims of this study were to develop models for predicting groundwater recharge from alley farming systems in the Murray Basin and for designing alley farms that will result in a prescribed recharge reduction. --p. 158. / Thesis (Ph.D.)--University of Adelaide, Dept. of Agronomy and Farming Systems, 2002
|
94 |
Paleoceanography of the eastern equatorial Pacific during the Pliocene : a high resolution radiolarian studyHays, Patricia E. 06 February 1987 (has links)
Graduation date: 1987
|
95 |
Relative palatabilities of Great Basin forages and mechanisms elicting selective grazing by cattleCruz-Guerra, Ruben 01 August 1994 (has links)
Graduation date: 1995
|
96 |
Stratigraphy, sedimentology, and hydrocarbon potential of Eocene forearc and subduction zone strata in the southern Tyee Basin, Oregon Coast RangeRyu, In-Chang 05 May 1995 (has links)
Sequence stratigraphic analysis of the southern Tyee basin, Oregon Coast Range, reveals
that the lower to middle Eocene forearc and subduction zone strata comprise four depositional
sequences. Sequence I (lower Umpqua Group) represents a partially subducted accretionary
wedge. Sequence II (upper Umpqua Group) is a deltaic sequence that filled irregular lows and
thinned over submarine highs created by intrabasin, imbricate thrust faulting. Farther north,
Sequences I and II rapidly thin and distally onlap oceanic basalt islands and searnounts of the
Siletz River Volcanics to form a condensed section and then thicken again northward. These
sequences are overlain by a tectonism-forced transgressive systems tract deposited during an
onlap caused by tectonic subsidence and dockwise basin rotation approximately 50 Ma. By
middle Eocene, sandy submarine fans and wave-dominated deltas of Sequences III and IV (Tyee,
Elkton, Bateman, and Spencer formations) prograded northward down the axis of the Tyee
forearc basin and across the structural trend of the Umpqua Group.
Organic geochemistry indicates that most units are thermally immature and contain lean,
gas-prone Type III kerogen. However, some beds (coals) are sufficiently organic-rich to be
sources of biogenic and thermogenic methane discovered in numerous seeps. Reservoir-quality
porosities and permeabilities are identified in a few delta front and turbidite sandstones of
Sequences II and III, although zeolite, clay, and quartz diagenesis has destroyed most potential
sandstone reservoirs.
The overall hydrocarbon potential of the basin is moderately low. Several requirements
f or commercial accumulations of hydrocarbons, however, probably exist locally within and
adjacent to the basin. Three speculative petroleum systems are identified. The first includes the
southern part of the basin near the border with the Mesozoic Klamath Mountains and is related to
a proposed subduction zone maturation mechanism along thrust faults. The second is centered in
the northern part of the study area and may be associated with basin-center gas in an
overpressured zone. The third occurs near the eastern border of the basin where maturation is
related to local heating by sills and migration of hydrothermal fluids associated with mid-
Tertiary volcanism in the Western Cascade arc. / Graduation date: 1995
|
97 |
The permian Pobei mafic-ultramafic intrusion (NE Tarim, NW China) and associated sulfide mineralizationYang, Shenghong, 杨胜洪 January 2011 (has links)
published_or_final_version / Earth Sciences / Doctoral / Doctor of Philosophy
|
98 |
Petroleum geology of the Gunnedah-Bowen-Surat Basins, Northern New South Wales : stratigraphy, organic petrology and organic geochemistryOthman, Rushdy, School of Biological, Earth & Environmental Sciences, UNSW January 2003 (has links)
The three-dimensional thermal maturity pattern has been investigated and the hydrocarbon generation potential assessed for the Permian and Triassic sequences of the southern Bowen and northern Gunnedah Basins and the lower part of the overlying Jurassic Cretaceous Surat Basin sequence in northern New South Wales. An oil-source rock correlation also has been investigated in the Gunnedah Basin. Vitrinite reflectance measurements were conducted on 256 samples from 28 boreholes. A total of 50 of these samples were subjected to Rock-Eval pyrolysis analysis, and 28 samples extracted for additional organic geochemical studies (GCMS). A re-evaluation of the stratigraphy in the southern Bowen Basin and a stratigraphic correlation between that area and the northern Gunnedah Basin was also included in the study. An overpressured shaly interval has been identified as a marker bed within the lower parts of the Triassic Moolayember and Napperby Formations, in the Bowen and Gunnedah Basins respectively. Suppressed vitrinite reflectance in the Permian sequence was used as another marker for mapping the stratigraphic sequence in the southern Bowen Basin. The Permian sequence in the Bowen Basin thins to the south, and probably pinches out over the Moree High and also to the west. The coal-bearing Kianga Formation is present in the north and northeastern parts of the study area. A disconformity surface between Digby and Napperby Formations in the Gunnedah Basin is probably time-equivalent to deposition of the Clematis Group and Showgrounds Sandstone in the Bowen Basin. The Clematis Group is absent in the study area, and the Moolayember Formation considered equivalent to the Napperby Formation. Although in many cases core samples were not available, handpicking of coal or shaly materials from cuttings samples where geophysical log signatures identify these materials helped in reducing contamination from caved debris. Histogram plots of reflectance also helped where the target and caved debris were of similar lithology. Vertical profiles of the vitrinite reflectance identified suppressed intervals in the study area due to marine influence (Back Creek Group and Maules Creek Formation) and liptinite rich source organic matter (Goonbri Formation). The suppression occurs due to the perhydrous character of the preserved organic matter. High reflectance values were noted within intrusion-affected intervals, and two types of igneous intrusion profiles were identified; these are simple and complex profiles. An isoreflectance map for the non-suppressed interval at the base of the Triassic sequence in the southern Bowen Basin shows that the organic matter is mature more towards the east close to the Goondiwindi Fault, and also towards the west where the Triassic sequence directly overlies the basement. High values also occur over the Gil Gil Ridge in the middle, to the south over the Moree High, and to the north where the sequence is thicker. The reflectance gradient in the suppressed intervals is higher than in the overlying non-suppressed sequences, especially when the rank has resulted from burial depth. Tmax from Rock-Eval pyrolysis was found to be lower in the perhydrous intervals, and was high in mature and igneous intrusion-affected intervals. Based on the source potential parameters, the Permian Back Creek Group is a better source than the Kianga Formation, while the Goonbri Formation is better than the Maules Creek Formation. The Triassic Napperby Formation has a fair capacity to generate oil, and is considered a better source rock than the equivalent Moolayember Formation. The Jurassic Walloon Coal Measures is a better source than Evergreen Formation, and has the best source rock characteristics, but is immature. The Rock-Eval S1 value shows better correlation with extracted hydrocarbon compounds (saturated and aromatics) than the total extractable organic matter. This suggests that solvent extraction has a greater ability to extract NSO compounds than temperature distillation over the Rock-Eval S1 interval. Terrestrial organic matter is the main source input for the sequences studied. This has been identified from organic petrology and from the n-alkane distributions and the relatively high C29 steranes and low sterane/hopane ratios. The absence of marine biomarker signatures in the Permian marine influenced sequence, could be attributed to their dilution by overwhelming amounts of non-marine organic matter. A mainly oxic to suboxic depositional environment is inferred from trace amounts of 25-NH, BNH and TNH. This is further supported by relatively high pr/ph ratios. Although C29/C30 is generally regarded as an environmental indicator, high values were noted in intrusion-affected samples. The 22S and 20S ratios were inverted ????reaches pseudo-equilibrium???? in such rapidly heated, high maturity samples. The ratio of C24 tetracyclic terpane to C21-C26 tricyclic terpanes decreases, instead of increasing, within the Napperby Formation close to a major igneous intrusive body. The 22S ratio, which is faster in reaction than the other terpane and sterane maturity parameters, shows that the Permian sequence lies within the oil generation stage in the Bowen Basin, except for a Kianga Formation sample. The Triassic sequence is marginally mature, and the Jurassic sequence is considered immature. In the Gunnedah Basin, the Permian sequence in Bellata-1 and Bohena-1, and the Triassic sequence in Coonarah-1A, lie within the oil generation range. In the intrusion-affected high maturity samples, the ratio is reaches pseudo-equilibrium. This and other terpane and sterane maturity parameters are not lowered (suppressed) in the perhydrous intervals. The ???????? sterane ratio, however, is slowest in reaction to maturity, and variations in low maturity samples are mainly due to facies changes. Diasterane/sterane ratios, in the current study, increase with increasing TOC content up to 5% TOC, but decrease in rocks with higher TOC contents including coals. Highly mature samples, as expected, in both cases are anomalous with high ratios. Calculated vitrinite reflectance based on the method of Radke and Welte (1983), as well as MPI 1 and MPI 2, shows the best comparison to observed values. These aromatic maturity parameters are lowered within the reflectance-suppressed intervals. Oil stains in the Jurassic Pilliga Sandstone in the Bellata-1 well have been identified as being indigenous and not due to contamination. The vitrinite reflectance calculated to the oil stain suggests that the source rock should be within a late mature zone. Such high maturity levels are only recognised within intrusion-affected intervals. A close similarity between the oil stain sample and the intruded interval of the Napperby Formation is evident from the thermal maturity and biomarker content. Hydrocarbon generation and expulsion from the lower part of the Napperby Formation as a result of igneous intrusion effects is suggested as the source of the oil in this particular occurrence. Terpane and sterane maturity parameters increase with increasing burial depth in the intervals with suppressed (perhydrous) vitrinite reflectance. The generation maturity parameters also increase through intervals with perhydrous vitrinite, which suggests that hydrocarbons continue to be generated and the actual amount is increasing even though traditional rank ????????????stress???????????? maturity parameters are lowered. Accordingly, the Permian sequences in the lower part of the Bowen Basin are at least within the peak oil generation zone, and probably within late oil generation in the north and northeast of the study area. To generate significant amounts of hydrocarbon, however, the thickness of the shaly and coaly intervals in the Permian sequence is probably a critical parameter. In the Gunnedah Basin, a significant amount of hydrocarbon generation is probably only possible as a result of igneous intrusions.
|
99 |
The source rock and petroleum geochemistry of the Early Jurassic Poolowanna Formation, Eromanga Basin / by Meshack L.N. Kagya.Kagya, Meshack L. N. January 1997 (has links)
Leaf 288 never printed but text is complete. / Bibliography: leaves 293-318. / xi, 323 leaves : ill. (some col.), maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 1998?
|
100 |
Upper Palaeozoic biostratigraphy of the Yarrol Basin in the vicinity of MontoDear, John Francis. Unknown Date (has links)
No description available.
|
Page generated in 0.0683 seconds