Spelling suggestions: "subject:"basinscale erosion rates"" "subject:"basilicale erosion rates""
1 |
Erosion Rates in and Around Shenandoah National Park, VA Determined Using Analysis of Cosmogenic 10BeDuxbury, Jane 13 February 2009 (has links)
We use cosmogenic 10Be analysis of fluvial sediments and bedrock to estimate erosion rates (103 – 106 year timescale) and to infer the distribution of post-orogenic geomorphic processes in the Blue Ridge Province in and around Shenandoah National Park, VA. Our sampling plan was designed to investigate relationships between erosion rate, lithology, slope, and basin area. Fifty-nine samples were collected from a variety of basin sizes (<1 – 3351 km2) and average basin slopes (7 - 26°) in each of four different lithologies that crop out in the Park: granite, metabasalt, quartzite, and siliciclastic rocks. The samples include bedrock (n = 5), fluvial sediment from single-lithology basins (n = 43), and fluvial sediment from multilithology basins (n = 11): two of these samples are from rivers draining streams exiting the eastern and western slopes of the Park (Rappahannock and Shenandoah Rivers). Inferred erosion rates for all lithologies for fluvial samples range from 3.8 to 24 m/My. The mean erosion rate for single-lithology basins in the Park is 11.6 ± 4.8 m/My. Singlelithology erosion rates ranges for fluvial samples are: granite (basin size = ~0.4-40 km2 and slope = 11-23°), 7.9–22 m/My; metabasalt (basin size = ~1-25 km2 and slope = 11-19°), 4.8–24 m/My; quartzite (basin size = ~0.1-9 km2 and slope = 12-23°), 4.7–17 m/My; and siliciclastic rocks (basin size = ~0.3-13 km2 and slope = 18-26°), 6.2–17 m/My. The mean erosion rate for multilithology basins (basin size = ~1-3351 km2 and slope = 7-22°) is 10.2 m/My, and individually for the Shenandoah River 7.3 m/My and the Rappahannock River 13.8 m/My. Bedrock erosion rates range from 2.4-13 m/My across all lithologies, with a mean erosion rate of 7.9 ± 5.0 m/My. Grain-size specific 10Be analysis of four samples showed no consistent trend of concentration with grain size. These data support Hack’s dynamic equilibrium model. Slope and erosion rate are not well correlated, and mean erosion rates are similar for different lithologies. Cosmogenicallydetermined erosion rates in Shenandoah Park are similar to or lower than those reported elsewhere in the Appalachians including those of Matmon and others (2003), 25 to 30 m/My for metaclastic rocks in the steep Great Smoky Mountains, Reuter and others (2004), 4 – 54 m/My in Susquehanna River basin for shale, sandstone, and schist, and Sullivan and others (2006), 6-38 m/My in the micaceous schist and gneiss of the Blue Ridge Escarpment. Cosmogenic erosion rates (integration over 104 yrs) in the Blue Ridge province of Shenandoah National Park are consistent with long-term unroofing rates (integration over 107 yrs) estimated from U-Th/He measurements (11-18 m/My) in samples collected near the Blue Ridge Escarpment by Spotila and others (2004), and fission tracks (20 m/My) in the Appalachians by Naeser and others (2005). The consistency of denudation rates integrated over very different periods of time suggests steady erosion most likely in balance with, and driving isostatic uplift of rock.
|
Page generated in 0.1155 seconds