1 |
Amélioration des connaissances sur le colmatage des systèmes d'infiltration d'eaux pluvialesGonzalez-Merchan, Carolina 15 May 2012 (has links) (PDF)
Les ouvrages d'infiltration sont utilisés aujourd'hui comme alternative au réseau d'assainissement pluvial. Ils réduisent les risques d'inondation, contribuent au piégeage de polluants permettant ainsi de limiter la détérioration des milieux aquatiques superficiels et sont reconnus pour recharger la nappe. Cependant leur fonctionnement est affecté à long terme par le colmatage réduisant leur performance hydraulique. Par ailleurs, lorsque ces systèmes sont munis de surverses, le colmatage limite les capacités d'interception des flux d'eau et des polluants. Le colmatage constitue donc un facteur clé dans le fonctionnement de ces systèmes tant sur un plan hydraulique qu'environnemental. Cette thèse a pour but de mesurer et de comprendre l'évolution spatio-temporelle du colmatage à une échelle mégascopique (l'échelle d'un ouvrage extensif type) et diachronique (sur le moyen terme). Pour cela une approche expérimentale a été menée au sein de l'Observatoire de Terrain en Hydrologie Urbaine (OTHU) selon trois niveaux d'investigation sur un même ouvrage en conditions réelles de fonctionnement. Un premier niveau (échelle globale) a consisté à mesurer l'évolution temporelle du système pris dans son ensemble grâce au calage de la résistance hydraulique au sens du modèle de Bouwer. Cette étape a nécessité de mesurer et d'exploiter des données en continu de flux d'eau, de sédiments, de matière organique apportés au système, les facteurs environnementaux comme la température d'air et d'eau, l'ensoleillement, le rythme, la nature des événements pluvieux, la saisonnalité, etc., sur un historique de 8 ans. Cette étape nous a mis en évidence la dynamique d'évolution du colmatage et le rôle bénéfique du développement de la végétation sur le maintien de la capacité d'infiltration globale d'un ouvrage de ce type. Un deuxième niveau (échelle semi globale) nous permettant de distinguer l'évolution temporelle du colmatage du fond et des parois, a montré leur dynamique respective (rapide pour le fond, très lente voire inexistante pour les parois). Un troisième niveau (échelle locale) a tenté d'explorer la répartition spatiale et temporelle du colmatage sur le fond des ouvrages sur des échelles de temps plus courtes. L'approche expérimentale a consisté à caractériser la couche colmatante en terme physico chimique et dans une moindre mesure biologique (conductivité hydraulique à saturation, granulométrie, porosité, masse volumique apparente, masse volumique des particules solides, matière organique, biomasse). Elle a analysé également le rôle de la végétation spontanée sur la capacité d'infiltration vis-à-vis des caractéristiques de l'horizon de surface et la structure aérienne et racinaire des espèces présentes. Enfin des analyses statistiques de l'évolution du colmatage à chaque échelle a mis en évidence la part potentiellement importante du colmatage biologique sur ces systèmes alors que, pour la gestion des eaux pluviales ce facteur est généralement négligé.
|
2 |
Amélioration des connaissances sur le colmatage des systèmes d’infiltration d’eaux pluviales / Improvement of knowledge about clogging stormwater infiltration systemsGonzalez-Merchan, Carolina 15 May 2012 (has links)
Les ouvrages d’infiltration sont utilisés aujourd’hui comme alternative au réseau d’assainissement pluvial. Ils réduisent les risques d’inondation, contribuent au piégeage de polluants permettant ainsi de limiter la détérioration des milieux aquatiques superficiels et sont reconnus pour recharger la nappe. Cependant leur fonctionnement est affecté à long terme par le colmatage réduisant leur performance hydraulique. Par ailleurs, lorsque ces systèmes sont munis de surverses, le colmatage limite les capacités d’interception des flux d’eau et des polluants. Le colmatage constitue donc un facteur clé dans le fonctionnement de ces systèmes tant sur un plan hydraulique qu’environnemental. Cette thèse a pour but de mesurer et de comprendre l’évolution spatio-temporelle du colmatage à une échelle mégascopique (l’échelle d’un ouvrage extensif type) et diachronique (sur le moyen terme). Pour cela une approche expérimentale a été menée au sein de l’Observatoire de Terrain en Hydrologie Urbaine (OTHU) selon trois niveaux d’investigation sur un même ouvrage en conditions réelles de fonctionnement. Un premier niveau (échelle globale) a consisté à mesurer l’évolution temporelle du système pris dans son ensemble grâce au calage de la résistance hydraulique au sens du modèle de Bouwer. Cette étape a nécessité de mesurer et d’exploiter des données en continu de flux d’eau, de sédiments, de matière organique apportés au système, les facteurs environnementaux comme la température d’air et d’eau, l’ensoleillement, le rythme, la nature des événements pluvieux, la saisonnalité, etc., sur un historique de 8 ans. Cette étape nous a mis en évidence la dynamique d’évolution du colmatage et le rôle bénéfique du développement de la végétation sur le maintien de la capacité d’infiltration globale d’un ouvrage de ce type. Un deuxième niveau (échelle semi globale) nous permettant de distinguer l’évolution temporelle du colmatage du fond et des parois, a montré leur dynamique respective (rapide pour le fond, très lente voire inexistante pour les parois). Un troisième niveau (échelle locale) a tenté d’explorer la répartition spatiale et temporelle du colmatage sur le fond des ouvrages sur des échelles de temps plus courtes. L’approche expérimentale a consisté à caractériser la couche colmatante en terme physico chimique et dans une moindre mesure biologique (conductivité hydraulique à saturation, granulométrie, porosité, masse volumique apparente, masse volumique des particules solides, matière organique, biomasse). Elle a analysé également le rôle de la végétation spontanée sur la capacité d’infiltration vis-à-vis des caractéristiques de l’horizon de surface et la structure aérienne et racinaire des espèces présentes. Enfin des analyses statistiques de l’évolution du colmatage à chaque échelle a mis en évidence la part potentiellement importante du colmatage biologique sur ces systèmes alors que, pour la gestion des eaux pluviales ce facteur est généralement négligé. / Infiltration systems are widely used in urban stormwater management. Infiltration systems can significantly reduce stormwater discharges to sewer systems and may therefore contribute to the mitigation of flooding problems. In addition infiltrations systems also help to reduce stormwater pollution, contribute to groundwater recharge and to water course protection. However, the hydraulic performance of infiltration systems decreases with time due to clogging effects. A clogged layer limits the transfer of water and pollutants in infiltrations systems. The clogging has a significant impact on the long-term performance of a system. The aim of this PhD study is to better understand spatio-temporal evolution of clogging on large infiltration systems involving different scales: (i) global scale, (ii) semi - global (the whole bottom and the sides), (iii) local scale (different part of the bottom). An experimental approach has been carried out in the OTHU project (Field Observatory on Urban Hydrology, www.othu.org). An infiltration basin studied with three investigations scales under real operation conditions. In a global scale, the temporal clogging evolution of the system was evaluated in terms of hydraulic resistance. This clogging indicator was calibrated from Bouwer’s model. Water inflow, TSS, COD, climatic factors (air temperature and solar energy), stormwater events and season variations were measured. The results describe the clogging evolution over 8 years. It indicates that vegetation may have a beneficial effect on infiltration capacity. In a semi global scale study, clogging evolution at the bottom and the sides, of the infiltration basin was evaluated. It proved that the clogging mainly occurs at the bottom, that is, the bottom was clogged fast and the clogging at the sides was slow. Local scale study, spatial distribution and temporal evolution of clogging at the bottom with in situ measurements during 2 years were investigated. The study characterised the clogged layer, with bio physic-chemical parameters (i.e., were investigated hydraulic conductivity, porosity, grain size, dry bulk density, organic matter and biomass content). This analyze compared also the role of different types of spontaneous vegetation. The result showed the high spatio-temporal heterogeneity on the infiltration surface. Statistical analysis of clogging evolution in each scale showed the significant impacts of biological activity in the stormwater infiltration basins, which was often neglected
|
3 |
Modélisation de l’impact des hétérogénéités lithologiques sur les écoulements préférentiels et le transfert de masse dans la zone vadose d’un dépôt fluvioglaciaire - Application à un bassin d’infiltration d’eaux pluviales / Modelling the impact of lithological heterogeneities on preferential flow and mass transfer in the vadose zone of a galciofluvial deposit – Application to a stormwater infiltration basinBen Slimene, Erij 25 April 2016 (has links)
Les bassins d’infiltration font partie intégrante des techniques alternatives de gestion des eaux pluviales en milieu urbain. Néanmoins, la potentialité de transfert de polluants vers la nappe est accrue en cas d’écoulements préférentiels dans les sols sous-jacents. Une bonne compréhension du couplage entre processus d’écoulements préférentiels en zone vadose et mécanismes géochimiques est requise. Cette thèse s’inscrit dans le cadre du suivi d’un bassin d’infiltration depuis plusieurs dizaines d’années de fonctionnement. Le site d’étude est situé sur le dépôt fluvioglaciaire hétérogène couvrant une grande partie de la région lyonnaise. Des auscultations sur une fosse sous le bassin (section 13.5m*2.5m) ont mis en évidence une régionalisation particulière de la pollution dans le sol. Cette étude s’appuie sur une étude numérique visant à identifier l’origine de la régionalisation des polluants et à la relier aux écoulements préférentiels résultant des hétérogénéités lithologiques. En amont de l’étude numérique, les lithofaciès sont complètement caractérisés aux regards de leurs propriétés hydrodynamiques, hydrodispersives et géochimiques. La modélisation numérique permet de souligner l’établissement de cheminements préférentiels en lien avec le contraste de propriétés hydrodynamiques, notamment lorsque de faibles débits sont appliqués en surface. Le rôle de chaque lithofaciès et de l’architecture du dépôt (stratification et inclusions) est clairement identifié. Les répercussions de tels écoulements sur les transferts non réactifs sont ensuite investiguées en combinant l’influence des écoulements préférentiels et le fractionnement de l’eau en fractions mobile et immobile résultant de l’hétérogénéité intrinsèque au sein de chaque lithofaciès. Enfin, ces processus physiques sont couplés à la réactivité géochimique pour le cas d’un polluant modèle (le cuivre) en prenant en compte la réactivité différentielle des lithofaciès. Ces résultats permettent de générer un modèle conceptuel d’écoulements préférentiels et de transfert de masse en milieu fortement hétérogène. / An infiltration basin is a stormwater best management practice (BMP) designed to infiltrate runoff volumes in urban areas. Nevertheless, preferential flow paths in the underlying soil may cause rapid migration of pollutants, thus contributing to groundwater contamination. Understanding the coupling between preferential flow processes in the vadose zone and geochemical mechanisms is then required. This thesis is a part of the follow-up of an infiltration basin for several decades of exploitation. The study site was settled over a highly heterogeneous glaciofluvial deposit covering much of the Lyon region. The investigation of an excavated section of the basin (13.5m long and 2.5m deep) pointed out a specific regionalization of pollution in the soil. This research is based on a numerical study to identify the origin of such a pollutant pattern and link this with preferential flow resulting from lithological heterogeneities. Different lithofacies were fully characterized regarding their hydraulic, hydrodispersive and geochemical properties. The numerical study proves that the high contrast in hydraulic properties triggers the establishment of preferential flow (capillary barriers and funneled flow). Preferential flow develops mainly for low initial water contents and low fluxes imposed at surface. The role of each lithofacies and architecture of deposit (stratification and inclusions) is clearly identified. The impact of such flows on non-reactive transfers is then investigated by combining the influence of preferential flow and pore water fractionation info into mobile and immobile fractions, resulting from the intrinsic heterogeneity within each lithofacies. Finally, these physical processes are coupled to the geochemical reactivity for a pollutant model (copper), taking into account the differential reactivity of lithofacies. These results generate a conceptual model of preferential flow and mass transfer in strongly heterogeneous media.
|
Page generated in 0.1231 seconds