Spelling suggestions: "subject:"bayesovské"" "subject:"bayesovská""
11 |
Hnutí ANO před parlamentními volbami 2017 / Political Party ANO before parliamentary elections 2017Měska, Ondřej January 2018 (has links)
The main objective of my diploma thesis is to analyze and evaluate the Political Movement ANO positioning within the political parties system of the Czech Republic by using a methodological framework approach. The thesis provides an analysis of electorate shifting and selected political parties manifestos as well as their comparison with the Political Movement ANO. Timewise, my focus is on the period prior to the election to the Chamber of Deputies of the Parliament of the Czech Republic in 2017. As for analytical purposes, the Hierarchical Bayesian Modeling has been used. This statistical model helps to get the respective values and to show the electoral vote changes between the last two parliament elections (to Chamber of Deputies). The author uses quantitative and qualitative research for comparison and analysis of programmatical convergency as defined in the election manifestos of various political parties. For manifestos quantification a coding scheme by a Comparative manifesto project group has been applied. The reason for using the above mentioned scheme is that it provides a structured methodology to quantify the domains that the political parties do focus the most in their manifestos. The aim of the analytical part of the thesis is to define how and especially from where the Movement ANO...
|
12 |
Klasifikace dokumentů podle tématu / Document ClassificationMarek, Tomáš January 2013 (has links)
This thesis deals with a document classification, especially with a text classification method. Main goal of this thesis is to analyze two arbitrary document classification algorithms to describe them and to create an implementation of those algorithms. Chosen algorithms are Bayes classifier and classifier based on support vector machines (SVM) which were analyzed and implemented in the practical part of this thesis. One of the main goals of this thesis is to create and choose optimal text features, which are describing the input text best and thus lead to the best classification results. At the end of this thesis there is a bunch of tests showing comparison of efficiency of the chosen classifiers under various conditions.
|
13 |
Využití vybraných metod strojového učení pro modelování kreditního rizika / Machine Learning Methods for Credit Risk ModellingDrábek, Matěj January 2017 (has links)
This master's thesis is divided into three parts. In the first part I described P2P lending, its characteristics, basic concepts and practical implications. I also compared P2P market in the Czech Republic, UK and USA. The second part consists of theoretical basics for chosen methods of machine learning, which are naive bayes classifier, classification tree, random forest and logistic regression. I also described methods to evaluate the quality of classification models listed above. The third part is a practical one and shows the complete workflow of creating classification model, from data preparation to evaluation of model.
|
14 |
Návrh a implementace Data Mining modelu v technologii MS SQL Server / Design and implementation of Data Mining model with MS SQL Server technologyPeroutka, Lukáš January 2012 (has links)
This thesis focuses on design and implementation of a data mining solution with real-world data. The task is analysed, processed and its results evaluated. The mined data set contains study records of students from University of Economics, Prague (VŠE) over the course of past three years. First part of the thesis focuses on theory of data mining, definition of the term, history and development of this particular field. Current best practices and meth-odology are described, as well as methods for determining the quality of data and methods for data pre-processing ahead of the actual data mining task. The most common data mining techniques are introduced, including their basic concepts, advantages and disadvantages. The theoretical basis is then used to implement a concrete data mining solution with educational data. The source data set is described, analysed and some of the data are chosen as input for created models. The solution is based on MS SQL Server data mining platform and it's goal is to find, describe and analyse potential as-sociations and dependencies in data. Results of respective models are evaluated, including their potential added value. Also mentioned are possible extensions and suggestions for further development of the solution.
|
15 |
Komprimované vzorkování pro efektivní sledování objektu senzorovou sítí / Compressive sampling for effective target tracking in a sensor networkKlimeš, Ondřej January 2019 (has links)
The master's thesis deals with target tracking. For this a decentralized sensor network using distributed particle filter with likelihood consensus is used. This consensus is based on a sparse representation of local likelihood function in a suitable chosen dictionary. In this thesis two dictionaries are compared: the widely used Fourier dictionary and our proposed B-splines. At the same time, thanks to the sparsity of distributed data, it is possible to implement compressed sensing method. The results are compared in terms of tracking error and communication costs. The thesis also contains scripts and functions in MATLAB.
|
16 |
Pokročilé dolování v datech v kardiologii / Advanced Data Mining in CardiologyMézl, Martin January 2009 (has links)
The aim of this master´s thesis is to analyse and search unusual dependencies in database of patients from Internal Cardiology Clinic Faculty Hospital Brno. The part of the work is theoretical overview of common data mining methods used in medicine, especially decision trees, naive Bayesian classifier, artificial neural networks and association rules. Looking for unusual dependencies between atributes is realized by association rules and naive Bayesian classifier. The output of this work is a complex system for Knowledge discovery in databases process for any data set. This work was realized with collaboration of Internal Cardiology Clinic Faculty Hospital Brno. All programs were made in Matlab 7.0.1.
|
17 |
Rozpoznávání SPZ / LPR RecognitionTrkal, Ondřej January 2016 (has links)
The thesis deals with analysis and design of system for automatic localization and recognition of the license plate. The input images are from different sources, and contain large scenic and weather variations. The aim was to create a system able to find the licence plate on the image and recognize its alphanumeric figure. In this work, there is a focus on analysis and implementation of localization and optical character recognition methods. One own and four other localization methods are compared. There are also compared three classifiers for optical character recognition. Localization and OCR methods are tested on real data and evaluated in accordance with the calculated evaluation parameters. The work also contains sensitivity analysis of the proposed system.
|
18 |
Detekce a sledování malých pohybujících se objektů / Detection and Tracking of Small Moving ObjectsFilip, Jan Unknown Date (has links)
Thesis deals with the detection and tracking of small moving objects from static images. This work shows a general overview of methods and approaches to detection and tracking of objects. There are also described some other approaches to the whole solution. It also included basic definitions, such a noise, convolution and mathematical morphology. The work described Bayesian filtering and Kalman filter. It described the theory of Wavelets, wavelets filters and transformations. The work deals with different ways of the blob`s detection. It is here the design and implementation of applications, which is based on the wavelets filters and Kalman filter. It`s implemented several methods of background subtraction, which are compared by testing. Testing and application are designed to detect vehicles, which are moving faraway (at least 200 m away).
|
19 |
Improving Efficiency of Prevention in Telemedicine / Zlepšování učinnosti prevence v telemedicíněNálevka, Petr January 2010 (has links)
This thesis employs data-mining techniques and modern information and communication technology to develop methods which may improve efficiency of prevention oriented telemedical programs. In particular this thesis uses the ITAREPS program as a case study and demonstrates that an extension of the program based on the proposed methods may significantly improve the program's efficiency. ITAREPS itself is a state of the art telemedical program operating since 2006. It has been deployed in 8 different countries around the world, and solely in the Czech republic it helped prevent schizophrenic relapse in over 400 participating patients. Outcomes of this thesis are widely applicable not just to schizophrenic patients but also to other psychotic or non-psychotic diseases which follow a relapsing path and satisfy certain preconditions defined in this thesis. Two main areas of improvement are proposed. First, this thesis studies various temporal data-mining methods to improve relapse prediction efficiency based on diagnostic data history. Second, latest telecommunication technologies are used in order to improve quality of the gathered diagnostic data directly at the source.
|
20 |
Identifikace zařízení na základě jejich chování v síti / Behaviour-Based Identification of Network DevicesPolák, Michael Adam January 2020 (has links)
Táto práca sa zaoberá problematikou identifikácie sieťových zariadení na základe ich chovania v sieti. S neustále sa zvyšujúcim počtom zariadení na sieti je neustále dôležitejšia schopnosť identifikovať zariadenia z bezpečnostných dôvodov. Táto práca ďalej pojednáva o základoch počítačových sietí a metódach, ktoré boli využívané v minulosti na identifikáciu sieťových zariadení. Následne sú popísané algoritmy využívané v strojovom učení a taktiež sú popísané ich výhody i nevýhody. Nakoniec, táto práca otestuje dva tradičné algorithmy strojového učenia a navrhuje dva nové prístupy na identifikáciu sieťových zariadení. Výsledný navrhovaný algoritmus v tejto práci dosahuje 89% presnosť identifikácii sieťových zariadení na reálnej dátovej sade s viac ako 10000 zariadeniami.
|
Page generated in 0.0359 seconds