• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

System Optimization and Patient Translational Motion Correction for Reduction of Artifacts in a Fan-Beam CT Scanner

Wise, Zachary Gordon Lee 19 September 2012 (has links)
No description available.
12

Étude des artefacts en tomodensitométrie par simulation Monte Carlo

Bedwani, Stéphane 08 1900 (has links)
En radiothérapie, la tomodensitométrie (CT) fournit l’information anatomique du patient utile au calcul de dose durant la planification de traitement. Afin de considérer la composition hétérogène des tissus, des techniques de calcul telles que la méthode Monte Carlo sont nécessaires pour calculer la dose de manière exacte. L’importation des images CT dans un tel calcul exige que chaque voxel exprimé en unité Hounsfield (HU) soit converti en une valeur physique telle que la densité électronique (ED). Cette conversion est habituellement effectuée à l’aide d’une courbe d’étalonnage HU-ED. Une anomalie ou artefact qui apparaît dans une image CT avant l’étalonnage est susceptible d’assigner un mauvais tissu à un voxel. Ces erreurs peuvent causer une perte cruciale de fiabilité du calcul de dose. Ce travail vise à attribuer une valeur exacte aux voxels d’images CT afin d’assurer la fiabilité des calculs de dose durant la planification de traitement en radiothérapie. Pour y parvenir, une étude est réalisée sur les artefacts qui sont reproduits par simulation Monte Carlo. Pour réduire le temps de calcul, les simulations sont parallélisées et transposées sur un superordinateur. Une étude de sensibilité des nombres HU en présence d’artefacts est ensuite réalisée par une analyse statistique des histogrammes. À l’origine de nombreux artefacts, le durcissement de faisceau est étudié davantage. Une revue sur l’état de l’art en matière de correction du durcissement de faisceau est présentée suivi d’une démonstration explicite d’une correction empirique. / Computed tomography (CT) is widely used in radiotherapy to acquire patient-specific data for an accurate dose calculation in radiotherapy treatment planning. To consider the composition of heterogeneous tissues, calculation techniques such as Monte Carlo method are needed to compute an exact dose distribution. To use CT images with dose calculation algorithms, all voxel values, expressed in Hounsfield unit (HU), must be converted into relevant physical parameters such as the electron density (ED). This conversion is typically accomplished by means of a HU-ED calibration curve. Any discrepancy (or artifact) that appears in the reconstructed CT image prior to calibration is susceptible to yield wrongly-assigned tissues. Such tissue misassignment may crucially decrease the reliability of dose calculation. The aim of this work is to assign exact physical values to CT image voxels to insure the reliability of dose calculation in radiotherapy treatment planning. To achieve this, origins of CT artifacts are first studied using Monte Carlo simulations. Such simulations require a lot of computational time and were parallelized to run efficiently on a supercomputer. An sensitivity study on HU uncertainties due to CT artifacts is then performed using statistical analysis of the image histograms. Beam hardening effect appears to be the origin of several artifacts and is specifically addressed. Finally, a review on the state of the art in beam hardening correction is presented and an empirical correction is exposed in detail.
13

Étude des artefacts en tomodensitométrie par simulation Monte Carlo

Bedwani, Stéphane 08 1900 (has links)
En radiothérapie, la tomodensitométrie (CT) fournit l’information anatomique du patient utile au calcul de dose durant la planification de traitement. Afin de considérer la composition hétérogène des tissus, des techniques de calcul telles que la méthode Monte Carlo sont nécessaires pour calculer la dose de manière exacte. L’importation des images CT dans un tel calcul exige que chaque voxel exprimé en unité Hounsfield (HU) soit converti en une valeur physique telle que la densité électronique (ED). Cette conversion est habituellement effectuée à l’aide d’une courbe d’étalonnage HU-ED. Une anomalie ou artefact qui apparaît dans une image CT avant l’étalonnage est susceptible d’assigner un mauvais tissu à un voxel. Ces erreurs peuvent causer une perte cruciale de fiabilité du calcul de dose. Ce travail vise à attribuer une valeur exacte aux voxels d’images CT afin d’assurer la fiabilité des calculs de dose durant la planification de traitement en radiothérapie. Pour y parvenir, une étude est réalisée sur les artefacts qui sont reproduits par simulation Monte Carlo. Pour réduire le temps de calcul, les simulations sont parallélisées et transposées sur un superordinateur. Une étude de sensibilité des nombres HU en présence d’artefacts est ensuite réalisée par une analyse statistique des histogrammes. À l’origine de nombreux artefacts, le durcissement de faisceau est étudié davantage. Une revue sur l’état de l’art en matière de correction du durcissement de faisceau est présentée suivi d’une démonstration explicite d’une correction empirique. / Computed tomography (CT) is widely used in radiotherapy to acquire patient-specific data for an accurate dose calculation in radiotherapy treatment planning. To consider the composition of heterogeneous tissues, calculation techniques such as Monte Carlo method are needed to compute an exact dose distribution. To use CT images with dose calculation algorithms, all voxel values, expressed in Hounsfield unit (HU), must be converted into relevant physical parameters such as the electron density (ED). This conversion is typically accomplished by means of a HU-ED calibration curve. Any discrepancy (or artifact) that appears in the reconstructed CT image prior to calibration is susceptible to yield wrongly-assigned tissues. Such tissue misassignment may crucially decrease the reliability of dose calculation. The aim of this work is to assign exact physical values to CT image voxels to insure the reliability of dose calculation in radiotherapy treatment planning. To achieve this, origins of CT artifacts are first studied using Monte Carlo simulations. Such simulations require a lot of computational time and were parallelized to run efficiently on a supercomputer. An sensitivity study on HU uncertainties due to CT artifacts is then performed using statistical analysis of the image histograms. Beam hardening effect appears to be the origin of several artifacts and is specifically addressed. Finally, a review on the state of the art in beam hardening correction is presented and an empirical correction is exposed in detail.
14

Materials, Processes, and Characterization of Extended Air-gaps for the Intra-level Interconnection of Integrated Circuits

Park, Seongho 02 January 2008 (has links)
Materials, Processes, and Characterization of Extended Air-gaps for the Intra-level Interconnection of Integrated Circuits Seongho Park 157 pages Directed by Dr. Paul A. Kohl and Dr. Sue Ann Bidstrup Allen The integration of an air-gap as an ultra low dielectric constant material in an intra-metal dielectric region of interconnect structure in integrated circuits was investigated in terms of material properties of a thermally decomposable sacrificial polymer, fabrication processes and electrical performance. Extension of the air-gap into the inter-layer dielectric region reduces the interconnect capacitance. In order to enhance the hardness of a polymer for the better process reliabilities, a conventional norbornene-based sacrificial polymer was electron-beam irradiated. Although the hardness of the polymer increased, the thermal properties degraded. A new high modulus tetracyclododecene-based sacrificial polymer was characterized and compared to the norbornene-based polymer in terms of hardness, process reliability and thermal properties. The tetracyclododecene-based polymer was harder and showed better process reliability than the norbornene-based sacrificial polymer. Using the tetracyclododecene-based sacrificial polymer, a single layer Cu/air-gap and extended Cu/air-gap structures were fabricated. The effective dielectric constant of the air-gap and extended air-gap structures were 2.42 and 2.17, respectively. This meets the requirements for the 32 nm node. Moisture uptake of the extended Cu/air-gap structure increased the effective dielectric constant. The exposure of the structure to hexamethyldisilazane vapor removed the absorbed moisture and changed the structure hydrophobic, improving the integration reliability. The integration processes of the air-gap and the extended air-gap into a dual damascene Cu metallization process has been proposed compared to state-of-the-art integration approaches.

Page generated in 0.1213 seconds