• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trapping Efficiencies for the BLH-84, Helley-Smith, Elwha, and TR-2 Bedload Samplers

Gray, John R. 03 July 2019 (has links)
Bedload-trapping efficiencies for four types of pressure-difference bedload samplers – a standard Helley-Smith (intake-nozzle width and height of 76.2 mm x 76.2 mm), BLH-84 (76.2 mm x 76.2 mm), Elwha (203 mm x 102 mm) and Toutle River-2 (305 mm x 152 mm) a standard Helley-Smith, US BLH-84 (both with intake nozzle dimensions of 76.2 mm × 76.2 mm), Elwha (203 mm × 102 mm) and Toutle River-2 (TR-2; 305 mm × 152 mm) – were calculated from data collected during the StreamLab06 experiments in the St. Anthony Falls Laboratory Main Flume during January-March 2006. Sampler nozzle-flare ratios –the area of the nozzle's outlet divided by its inlet area – equaled 1.4 for all but the Helley-Smith sampler's nozzle-flare ratio of 3.22. A sampler's trapping coefficient quantifies its bedload-trapping efficiency. Technically supportable trapping coefficients are divided into raw trapping rates measured by the sampler to produce "true" bedload-transport rates equivalent to that which was inferred to have occurred in the absence of the sampler. Six combinations of sampler and bed types were tested; the BLH-84, Elwha, and Helley-Smith samplers were deployed atop a sand bed (D50 = 1.0 mm) during five steady flows ranging from 2.0-3.6 m3/s. The BLH-84, Elwha, and TR-2 samplers were deployed atop a gravel bed (D50 = 11.2 mm) at four steady flows ranging from 4.0-5.5 m3/s. Thirty-seven trials – repeated manual at-a-point deployments of a given bedload sampler for a given steady flow and bed type – took place. Trapping coefficients were calculated for each sampler and bed type in which it was deployed. Ergo, two of the samplers – the BLH-84 and Elwha – were each assigned two trapping efficiencies for sampling on a sand versus a gravel bed. These data were evaluated using four analytical methods: Ratio of Averages: This relatively simple and straight-forward method required calculating averages of bedload-transport rates derived for each of the 37 trials for a given bedload sampler and for up to nine combinations of weigh pans and time intervals. The computations were performed using untransformed data. Average of Ratios: This more complex method using real-space trapping data involved developing average transport rates from selected pan data for each bedload sample. Pan transport-averages were calculated for each interval equal to the duration of a single at-a-point bedload measurement, ranging from 15-180 seconds. Ratios (coefficients) were calculated by dividing each interval average into the single-sample trap rate. Those ratios were then averaged to produce a single trapping coefficient for the trial and then combined into a single average for each bedload-sampler/bed type/flow combination. Modified Thomas and Lewis Model (1993): The Thomas-Lewis Model was revised to operate using untransformed data in addition to cube-root transformed data (thus, the third and fourth analytical methods used, respectively), and to use nine pan-window combinations to calculate trapping coefficients. The original 3-step model required first regressing cube root-transformed sampler data on time-window averaged pan transport rates. The second step squared the regression residuals from the first step on the variance of the cube root of the interval-mean transport rate for the time window. The predicted values from the second-step regression were inverted and used as weights to re-estimate the first-step regression. Generalized trapping-coefficient calculations based on results from the four analytical methods for the bed-types in which the samplers were deployed follow: • BLH-84 Sampler: A 0.83 sand-bed trapping coefficient and 0.87 gravel-bed coefficient, which could be averaged to a single coefficient of 0.85. • Elwha Sampler: A 1.67 sand-bed trapping coefficient and 1.54 gravel-bed coefficient, which could be averaged to a single coefficient of 1.6 • Helley-Smith Sampler: The 3.11 sand-bed trapping coefficient could be applied as such or reasonably simplified to a value of 3.0, and • TR-2: The gravel-bed trapping coefficient equaled 1.70. An unadjusted bedload-trapping rate calculated from a sample collected by a given sampler can be divided by its trapping coefficient(s) to obtain the most reliable transport-rate value. / Ph.D.

Page generated in 0.1326 seconds