1 |
Machine Learning methods in shotgun proteomicsTruong, Patrick January 2023 (has links)
As high-throughput biology experiments generate increasing amounts of data, the field is naturally turning to data-driven methods for the analysis and extraction of novel insights. These insights into biological systems are crucial for understanding disease progression, drug targets, treatment development, and diagnostics methods, ultimately leading to improving human health and well-being, as well as, deeper insight into cellular biology. Biological data sources such as the genome, transcriptome, proteome, metabolome, and metagenome provide critical information about biological system structure, function, and dynamics. The focus of this licentiate thesis is on proteomics, the study of proteins, which is a natural starting point for understanding biological functions as proteins are crucial functional components of cells. Proteins play a crucial role in enzymatic reactions, structural support, transport, storage, cell signaling, and immune system function. In addition, proteomics has vast data repositories and technical and methodological improvements are continually being made to yield even more data. However, generating proteomic data involves multiple steps, which are prone to errors, making sophisticated models essential to handle technical and biological artifacts and account for uncertainty in the data. In this licentiate thesis, the use of machine learning and probabilistic methods to extract information from mass-spectrometry-based proteomic data is investigated. The thesis starts with an introduction to proteomics, including a basic biological background, followed by a description of how massspectrometry-based proteomics experiments are performed, and challenges in proteomic data analysis. The statistics of proteomic data analysis are also explored, and state-of-the-art software and tools related to each step of the proteomics data analysis pipeline are presented. The thesis concludes with a discussion of future work and the presentation of two original research works. The first research work focuses on adapting Triqler, a probabilistic graphical model for protein quantification developed for data-dependent acquisition (DDA) data, to data-independent acquisition (DIA) data. Challenges in this study included verifying that DIA data conformed with the model used in Triqler, addressing benchmarking issues, and modifying the missing value model used by Triqler to adapt for DIA data. The study showed that DIA data conformed with the properties required by Triqler, implemented a protein inference harmonization strategy, and modified the missing value model to adapt for DIA data. The study concluded by showing that Triqler outperformed current protein quantification techniques. The second research work focused on developing a novel deep-learning based MS2-intensity predictor by incorporating the self-attention mechanism called transformer into Prosit, an established Recurrent Neural Networks (RNN) based deep learning framework for MS2 spectrum intensity prediction. RNNs are a type of neural network that can efficiently process sequential data by capturing information from previous steps, in a sequential manner. The transformer self-attention mechanism allows a model to focus on different parts of its input sequence during processing independently, enabling it to capture dependencies and relationships between elements more effectively. The transformers therefore remedy some of the drawbacks of RNNs, as such, we hypothesized that the implementation of MS2-intensity predictor using transformers rather than RNN would improve its performance. Hence, Prosit-transformer was developed, and the study showed that the model training time and the similarity between the predicted MS2 spectrum and the observed spectrum improved. These original research works address various challenges in computational proteomics and contribute to the development of data-driven life science. / Allteftersom high-throughput experiment genererar allt större mängder data vänder sig området naturligt till data-drivna metoder för analys och extrahering av nya insikter. Dessa insikter om biologiska system är avgörande för att förstå sjukdomsprogression, läkemedelspåverkan, behandlingsutveckling, och diagnostiska metoder, vilket i slutändan leder till en förbättring av människors hälsa och välbefinnande, såväl som en djupare förståelse av cell biologi. Biologiska datakällor som genomet, transkriptomet, proteomet, metabolomet och metagenomet ger kritisk information om biologiska systems struktur, funktion och dynamik. I licentiatuppsats fokusområde ligger på proteomik, studiet av proteiner, vilket är en naturlig startpunkt för att förstå biologiska funktioner eftersom proteiner är avgörande funktionella komponenter i celler. Dessa proteiner spelar en avgörande roll i enzymatiska reaktioner, strukturellt stöd, transport, lagring, cellsignalering och immunsystemfunktion. Dessutom har proteomik har stora dataarkiv och tekniska samt metodologiska förbättringar görs kontinuerligt för att ge ännu mer data. Men för att generera proteomisk data krävs flera steg, som är felbenägna, vilket gör att sofistikerade modeller är väsentliga för att hantera tekniska och biologiska artefakter och för att ta hänsyn till osäkerhet i data. I denna licentiatuppsats undersöks användningen av maskininlärning och probabilistiska metoder för att extrahera information från masspektrometribaserade proteomikdata. Avhandlingen börjar med en introduktion till proteomik, inklusive en grundläggande biologisk bakgrund, följt av en beskrivning av hur masspektrometri-baserade proteomikexperiment utförs och utmaningar i proteomisk dataanalys. Statistiska metoder för proteomisk dataanalys utforskas också, och state-of-the-art mjukvara och verktyg som är relaterade till varje steg i proteomikdataanalyspipelinen presenteras. Avhandlingen avslutas med en diskussion om framtida arbete och presentationen av två original forskningsarbeten. Det första forskningsarbetet fokuserar på att anpassa Triqler, en probabilistisk grafisk modell för proteinkvantifiering som utvecklats för datadependent acquisition (DDA) data, till data-independent acquisition (DIA) data. Utmaningarna i denna studie inkluderade att verifiera att DIA-datas egenskaper överensstämde med modellen som användes i Triqler, att hantera benchmarking-frågor och att modifiera missing-value modellen som användes av Triqler till DIA-data. Studien visade att DIA-data överensstämde med de egenskaper som krävdes av Triqler, implementerade en proteininferensharmoniseringsstrategi och modifierade missing-value modellen till DIA-data. Studien avslutades med att visa att Triqler överträffade nuvarande state-of-the-art proteinkvantifieringsmetoder. Det andra forskningsarbetet fokuserade på utvecklingen av en djupinlärningsbaserad MS2-intensitetsprediktor genom att inkorporera self-attention mekanismen som kallas för transformer till Prosit, en etablerad Recurrent Neural Network (RNN) baserad djupinlärningsramverk för MS2 spektrum intensitetsprediktion. RNN är en typ av neurala nätverk som effektivt kan bearbeta sekventiell data genom att bevara och använda dolda tillstånd som fångar information från tidigare steg på ett sekventiellt sätt. Självuppmärksamhetsmekanismen i transformer tillåter modellen att fokusera på olika delar av sekventiellt data samtidigt under bearbetningen oberoende av varandra, vilket gör det möjligt att fånga relationer mellan elementen mer effektivt. Genom detta lyckas Transformer åtgärda vissa nackdelar med RNN, och därför hypotiserade vi att en implementation av en ny MS2-intensitetprediktor med transformers istället för RNN skulle förbättra prestandan. Därmed konstruerades Prosit-transformer, och studien visade att både modellträningstiden och likheten mellan predicerat MS2-spektrum och observerat spektrum förbättrades. Dessa originalforskningsarbeten hanterar olika utmaningar inom beräkningsproteomik och bidrar till utvecklingen av datadriven livsvetenskap. / <p>QC 2023-05-22</p>
|
Page generated in 0.1156 seconds