• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 15
  • 11
  • 10
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 220
  • 61
  • 37
  • 21
  • 20
  • 19
  • 18
  • 18
  • 17
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Reproduction strategies and distribution of larvae and juveniles of benthic soft-bottom invertebrates in the Kara Sea (Russian Arctic) the influence of river discharge on the structure of benthic communities ; a larval approach /

Fetzer, Ingo. Unknown Date (has links) (PDF)
University, Diss., 2004--Bremen.
62

Shallow water mega epibenthic communities in the high Antarctic (Weddell Sea) and the west coast of the Antarctic Peninsula (Bellingshausen Sea)

Raguá Gil, Juana Marianne. Unknown Date (has links) (PDF)
University, Diss., 2004--Bremen. / Enth. 3 Sonderabdr. aus verschiedenen Zeitschr.
63

Production of benthic macroinvertebrates in a river used for commercial navigation : Kanawha River, West Virginia /

Layton, Raymond Jay, January 1985 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1985. / Vita. Abstract. Includes bibliographical references (leaves 118-127). Also available via the Internet.
64

Benthic succession in a Texas estuary : the influence of hypoxia, salinity fluctuations, and disturbance frequency /

Ritter, Mary Christine, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 200-215). Available also in a digital version from Dissertation Abstracts.
65

Sandy beach morphodynamics and macrobenthic communities in temperate, subtropical and tropical regions : a macroecological approach

Soares, Alexandre Goulart January 2003 (has links)
A comprehensive study involving 52 microtidal beaches spanning from reflective to dissipative states and located in tropical, subtropical and temperate regions in the Atlantic, Pacific and Indian oceans was carried out to unravel the relative roles of latitude and beach morphodynamics in determining beach macrobenthic species richness, abundance, biomass and mean individual body sizes. Since beach slope is one of the most important factors controlling beach fauna, a model based on beach geometry was applied to the sub-aerial beach deposit to understand the role of physical factors in predicting equilibrium beach slopes. Additionally, it was tested if the occurrence of beach types is related to latitude, and how physical factors change with morphodynamics and latitude. The beach morphometric model makes three assumptions: 1) that the cross-section of a beach deposit is equivalent to a right-angled triangle, 2) that the physical hydrodynamic factors (wave height and spring tide amplitude) and the beach deposit characteristics (sand grain size, beach slope and width) are interchangeable with their geometric counterparts producing an equation to explain beach geometry, and 3) that the predicted beach slope is in equilibrium with the hydrodynamic and sedimentological forces. The equation for predicting beach slope was derived and then tested against field data collected over 52 beaches. The predicted slopes were not significantly different from the observed slopes of the studied natural beaches. However some estimated slopes were different than observed ones. Possible sources of deviation between calculated and observed slopes may be the systematic sampling errors associated with field data. Alternatively, observed slopes could be the result of past hydrodynamic conditions, explaining the differences with the slopes calculated by the beach morphometric model, which assumes a state of equilibrium between beach slope and hydrodynamic conditions. A higher correlation of beach faunal structure with observed slopes rather than with present hydrodynamic conditions could then be indicative of faunal responses to previous hydrodynamic conditions in the same way was the observed slopes. The beach morphometric model could therefore be also useful in predicting faunal responses to changing hydrodynamic conditions. Since the model does not consider wave period, it is concluded that further tests should be done using laboratory and time-series field data and incorporating the role of wave period and beach permeability to ascertain its predictive value. Tropical regions had significantly more beaches in a reflective state than temperate and subtropical regions. Some tropical beaches were fronted by coral reefs, which not only provided coarse carbonate particles, but also additionally dissipated the low wave energy present in these climatic areas. Only one dissipative beach with high energy was found in the tropics, in southeast Madagascar. Temperate and subtropical regions, on the other hand, were dominated by dissipative beaches with medium to fine sands. Open oceanic reflective beaches were non-existent in the subtropics and rare in temperate regions, only occurring in estuaries, enclosed bays or on islands facing the continent. Intermediate beaches were more common in the subtropics but also occurred frequently in the other two regions, having higher energy in temperate regions. Reflective beaches had significantly steeper slopes, coarser sands, smaller waves and shorter swash lengths when compared to dissipative beaches. Additionally, reflective beaches were narrower, had deeper water tables and in consequence shorter saturation zones. Wave periods and surfzone widths were on average larger on dissipative than on reflective beaches. The frequency of occurrence of beach types is therefore related to the climatic signature of each latitude. Mid latitudes would be predicted to have more dissipative beaches with large and long waves because of their proximity to the storm generating belt around 50-60° S - these beaches will have a predominantly finer sands because of the input by rivers in rainy areas. Lower latitudes will have more reflective beaches due to a modal low energy wave climate and also because of the presence of inshore and offshore biotic structures such as coral reefs that dissipate even more the energy from the waves. Tropical and subtropical regions had larger marine species pools than temperate regions. After controlling for biogeographical differences in total species pool, dissipative beaches were on average significantly richer than intermediate and reflective beaches. Crustaceans were also more diverse on dissipative beaches, this difference being not significant for either molluscs or polychaetes. Significant relationships were found between total beach species richness (with or without terrestrial species), crustacean and mollusc species richness with beach morphodynamics as represented by the Dean’s index. Indices incorporating the role of tide, such as BSI, were less important in predicting species richness on the microtidal beaches studied here. Several other physical factors were also significantly correlated with species richness, the most important being the Beach Deposit Index, i.e. BDI, a composite index of beach slope and grain size. The highest correlation was between BDI and relative species richness, i.e. local beach species richness / regional species richness. Total regional marine species richness was higher in Madagascar and North Brazil (tropical beaches) than in Southeast Brazil (subtropical), or the West Coast of South Africa and South-Central Chile (temperate beaches). Not only was the pool of species capable of colonizing beaches richer in tropical and subtropical regions, but also local diversity of each morphodynamic beach type was higher among tropical beaches than their temperate counterparts. Although the results of this study agree with the predictions of the swash exclusion hypotheses, several reflective and intermediate beaches had higher species richness than predicted before and this seems to be linked to the presence of finer sediments and a less turbulent flow for larvae to settle. It is concluded that beach species richness is not necessarily controlled by one major morphodynamic parameter; this control is complex and probably involves multiple interacting biotic (biological interactions) and abiotic (e.g. grain size, wave height, beach slope and width, water table) factors. Species richness seems to be controlled on two different scales: on an evolutionary one where tropical and subtropical regions have higher regional and local diversity due to higher speciation rates; and on an ecological scale, where fine grained sand beaches have their carrying capacity enhanced by higher larval settlement rates and survival of recruits towards adulthood. On average dissipative beaches had higher total densities and macrofaunal abundances than reflective ones. Crustaceans, terrestrial species and cirolanid isopods such as Excirolana spp. were also more abundant on dissipative beaches. The difference was not significant for molluscs and polychaetes. Significant relationships were found between total abundance, crustacean species richness and beach morphodynamics as represented by the Dean’s index. Again, BSI was less important than individual physical factors in determining faunal abundance on the studied microtidal beaches. Several other physical factors were also significantly correlated with abundance, the most important being the Beach Deposit Index (BDI). The highest correlation was between BDI and total macrofaunal abundance. Factors related to surf zone processes, and possibly productivity, were highly correlated with total community, crustaceans, Excirolana spp. and terrestrial species abundances. The abundances of polychaetes and molluscs were better correlated with factors related to the beach deposit (BDI, slope, grain size and water table depth). Significant differences were observed between latitudinal regions for the average beach and also for each beach type. In general temperate beaches harboured larger community densities and abundances, and also crustacean, Excirolana spp. and terrestrial abundances. Mollusc and polychaete abundances were larger on subtropical and tropical beaches. The control of abundance on a sandy beach is complex and involves multifactorial processes at evolutionary and ecological scales. At evolutionary scales animals seem to attain higher abundances in the region where they first evolved, e.g. amphipods and isopods in temperate regions. At ecological scales they attain higher abundances where productivity is higher (total macrofaunal, crustaceans, Excirolana spp., terrestrial spp.) or where the settlement environment is more benign (molluscs and polychaetes). Dissipative beaches supported larger average and total community biomass than reflective beaches. Crustaceans, terrestrial species and cirolanid isopods such as Excirolana spp. also had larger biomass on dissipative beaches. The difference was not significant for molluscs and polychaetes. Significant relationships were found between the biomass of community and taxonomic groups with beach morphodynamics as represented by the Dean’s morphodynamic index. On the microtidal beaches studied here, BSI was less important than other morphodynamic indices and single physical factors in determining faunal biomass and mean individual body size. Surf zone characteristics such as wave height, period and surf zone width had the highest correlations with community, crustacean.
66

The effects of habitat size and isolation on wetland benthos

Barnes, Karen January 1993 (has links)
</p> I investigated the effects of habitat fragmentation in terms of spatial scale (enclosures of different sizes) and the degree of isolation (different mesh sizes) on benthic macroinvertebrates in the littoral zone of a shallow lake. I hypothesized that decreasing diversity and increasing temporal variation will occur with decreasing size and increasing isolation of enclosures. This hypothesis was tested by examining spatial and temporal variation (coefficient of variation) among replicate enclosures. Variation in benthic diversity was further examined within and among enclosures. The degree of isolation and habitat size interacted to determine variation of species abundance in the benthic community. Specifically, at higher levels of isolation (plastic enclosures), variance among enclosures of the same and of different sizes was the greatest compared to less isolated enclosures. We also investigated the persistence of benthic macroinvertebrates where persistence is defined as constancy in the number of organisms through time. We hypothesized that persistence is lower in small and more isolated enclosures as opposed to large less isolated ones. We simultaneously tested the hierarchical nature of community persistence as outlined by Rahel (1990) to determine if there is a difference in the assessment of persistence of the assemblage depending on the analytical scale used. There is a possible scale effect at the level of abundance rank since small (1 and 4 m2 ) enclosures had lower persistence than large (9 and 16m2 ) enclosures. Low persistence in both abundance and abundance rank over time prevented a conclusive test of the hierarchical nature of community persistence. I conclude that it is important for benthic enclosure experiments to be conducted at various spatial and analytical scales and that, where replication is possible, spatial and temporal variation allows a thorough examination of different community responses. </p> / Thesis / Master of Science (MSc)
67

Population dynamics, life cycles and production of marine benthic polychaetes near Godhavn, Greenland.

Curtis, Mark A. January 1973 (has links)
No description available.
68

Trophodynamics of the benthic and hyperbenthic communities inhabiting the Sub-Antarctic Prince Edward Islands : stable isotope and fatty acid signatures

Allan, Elizabeth Louise January 2011 (has links)
The aim of this study was to investigate spatial changes in the trophic and energy pathways of the benthic community in the shallow shelf waters of the sub-Antarctic Prince Edward Islands (PEI). A combination of stable isotope and fatty acid analyses were used to provide a time-integrated view of the assimilated feeding history of selected components of the PEI benthic community. This study forms part of the larger project entitled “Variability in the Southern Ocean ecosystems” and is a contribution to the South African National Antarctic Programme (SANAP). During austral autumn 2009, benthic specimens were collected from 10 stations (from depths of 70 to 295 m) in different regions around the PEI: inter-island shelf (upstream, between and downstream of the islands) and nearshore. Historical data were combined with new data collected during 2009 to assess the long-term trends in the feeding ecology of the benthos in the region of the islands. The stable isotope and fatty acid signatures of the benthic suspension- and deposit-feeding organisms generated during this study suggested that these two communities incorporated both phytoplankton and kelp in their diets. Stable isotope, and to a lesser extent fatty acid signatures, indicated that kelp contributed more to the diets of those organisms in close proximity to the kelp beds (nearshore stations) than those from the inter-island region. Overall, however, pelagic phytoplankton was the dominant food source in the diets of all organisms, even for those living near the kelp beds. Notable exceptions were the sponges and bryozoans, in which kelp and phytoplankton contributed similar proportions to their diets, most likely resulting from a size restricted feeding mode. There were, therefore, no distinct spatial differences in the importance of the various food sources. However, fatty acid compositional data indicated increased food quality between and within the lee of the islands compared to upstream. The organisms collected upstream of the PEI had substantially lower quantities of total fatty acids (TFAs) than organisms of the same species collected from nearshore, open shelf or downstream stations. The increased food quality between and within the lee of the islands was likely a result of the “island mass effect”, which reflects increased phytoplankton concentrations at the PEI. The fatty acid profiles of hyperbenthic shrimp Nauticaris marionis, a key species in the PEI ecosystem, revealed no distinct ontogenetic or spatial patterns. This result is in contrast to the stable isotope analyses, which detected both spatial and ontogenetic differences in the diet of the shrimp. Nearshore shrimp were more ₁₃C-enriched than those from the inter-island region, suggesting increased kelp entering the food web within these regions. In addition, the shrimps demonstrated enrichment in δ₁₃C and δ₁₅N signatures with an increase in size, resulting in a relatively distinct separation of size classes, thus reflecting niche separation through their diets. The fatty acid profiles revealed that the shrimp all contained large proportions of polyunsaturated fatty acids (PUFAs) and essential fatty acids (EFAs), indicating that the quality of food consumed was similar among size class and region despite the niche separation and variation in carbon sources utilised. In addition, diatom and dinoflagellate fatty acids (20:5ω3 and 22:6ω3, respectively) occurred in the highest proportions in N. marionis, highlighting the importance of phytoplankton (indirectly) in their diet. These results represent strong evidence that phytoplankton is an importance food source in the PEI ecosystem. The temporal investigation of isotope signatures in the benthos at the PEI indicated that N. marionis demonstrated an overall depletion in δ₁₃C signatures over the period of 1984 to 2009 (nearshore: -2.55 ‰, inter-island: -2.32 ‰). Overall, the benthic community showed similar depletions in δ13C signatures (from -1.96 to -4.70 ‰), suggesting that shifts have occurred in the carbon signatures at the base of the food web. The depletion in δ₁₃C signatures of the benthos at the PEI most likely reflects increased contributions of smaller slow growing phytoplankton cells (more depleted signatures than large fast growing cells) in the diets of these organisms over time. These diet shifts, in turn, suggest a decrease in productivity has occurred at the islands, likely due to a decreased frequency and intensity of the “island mass effect”. Decreased phytoplankton productivity at the PEI likely results from the southward shift in the average position of the sub-Antarctic Front (SAF), most likely in response to climate change, which in turn promotes flow-through conditions rather than retention at the PEI.
69

Untangling the complexity of nearshore ecosystems : examining issues of scaling and variability in benthic communities

Schoch, G. Carl 12 May 1999 (has links)
The objective of this research was to improve our understanding of how changes in the environment affect ecological processes. Change detection is often confounded by the large variation found in ecological data due to the difficulty of finding replicates in nature. Intertidal communities were chosen for studies of biophysical interactions because the physical gradients are very strong, thus creating complex systems within spatial scales that are easily sampled. The selection of replicate beach habitats was the first step in designing a sampling protocol for comparative analyses of nearshore community structure. A high resolution shoreline partitioning model was developed to quantify the physical attributes of homogeneous shoreline segments and to statistically cluster replicate segments. This model was applied at 3 locations in Washington State. A portion of the south shore of San Juan Island was partitioned and the physical attributes quantified. Three groups of rocky segments differing only in slope angle were selected for biological sampling. The objective was to test the fidelity of macroalgal and invertebrate populations to replicate bedrock shore segments. The results showed that community structure and population abundances were more similar within groups of replicate segments (similar slopes) than among groups (different slopes). In South Puget Sound, community structure was compared to test for a deterministic organization of communities among replicate soft sediment beaches in an estuary. The results showed that replicate beach segments support similar communities, that communities become less similar as the distance between replicates increases, and that replicates within or among nearshore cells with similar temperature and salinity support communities that are more similar than replicates among cells with different water properties regardless of distance. On the outer Olympic coast, community comparisons were made among 9 sand beaches over a shoreline distance of 250 km. The results show that these communities are similar within segments and within nearshore cells, but because of population abundance fluctuations, the communities were different among cells and among years. This study shows that processes determining patterns in nearshore habitats can be quantified, which is a significant contribution to studies of habitat distribution and the siting of marine preserves. / Graduation date: 2000
70

Statistical foraminiferal ecology from seasonal samples, central Oregon continental shelf

Gunther, Fredrick John 28 October 1971 (has links)
This study examined the foraminifera and the ecologic conditions of the benthic environment of the Oregon shelf and the uppermost slope (75-550 m depth) between 143°45' N and 144°40' N. Seasonal collections monitored the near-bottom marine environment and the sedimentary substrate at 16 stations. The foraminiferal benthic fauna was examined from eight seasonal stations and two additional stations. Use of a multiple corer provided randomly selected subsarnples of the sediment for ecologic and faunal analyses. Use of water bottles that triggered upon bottom impact provided measurements of the water as close to the bottom as 0. 6 m. Computerized data processing and statistical analyses aided the ecologic and faunal evaluations. The environmental study showed the existence of considerable variation in the hydrography of near-bottom waters, especially between summer and winter (upwelling and non-upwelling) collections at the same station. Upwelling conditions directly affect the benthic Redacted for Privacy environment. In addition, the water at any one place, at least dciring upwelling, was so well mixed that vertical stratification did not exist between 0.6 and 5.0 m off the bottom. Statistically significant sea-. sorial variations in surface sediments at the same station were not observed. The living benthic foraminiferal fauna exhibited considerable within-station variation both in species composition and in specimen size of selected species. The percent abundance of individual dominant species varied in adjacent cores (subsamples) by amounts up to 46%. Living specimens of a single species were found that were three times as large as the smallest living specimen from the same sample, yet there was no evidence of a multimodal size distribution resulting from age classes. The author suggests that the dominant species are aggregated and that the aggregations are colonies of asexually produced siblings. Lack of fit of species-frequency curves to the lognormal distribution indicated that relatively few species are fit to reproduce in a particular environment; most juvenile specimens that enter a particular environment belong to species that will not thrive there and either die or simply maintain growth with little chance of reproductive success. The existence of colonial aggregations of individuals is considered to provide the best explanation of the observed variations between adjacent samples. However, the observed variations could be due to sampling error or to substrate microheterogeneity. A possible natural community of 15 dominant species has been determined for those species that form a consistent part of each other's biologic environment. The community crossed the depth and substrate boundaries upon which the stations were selected and appeared to be a general community for the Oregon outer shelf. The limits of the community appear to be determined mostly by water depth, with approximate boundaries at 75-100 m and somewhere between 200-500 m. Regression analyses to determine the ecologic control on the foraminiferal fauna did not indicate a close correspondence between faunal parameters and environmental variables. Regression analyses to determine the ecologic control on mdividual species indicated that most species depended upon a set of two to four environmental variables rather than upon one single limiting factor. The set for each species was different. Temperature. phosphate concentration and oxygen concentrations were common hydrographic members of sets; percent silt, percent sand, percent clay, organic carbon content and organic nitrogen were common sedimentary members of sets. / Graduation date: 1972

Page generated in 0.1022 seconds