• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of bentonite swelling on hydraulic conductivity of sand-bentonite mixtures (SBMs)

Spears, Amber 09 October 2014 (has links)
The hydraulic conductivity of sand-bentonite mixtures (SBMs) was measured to investigate the effects of mixing method, uniformity, and hydration of the mixtures. Triaxial tests were completed to determine the hydraulic conductivity of each specimen. Specimens using Ottawa sand and Wyoming bentonite, prepared with dry and suspension mixing conditions that altered the degree of hydration and swelling of bentonite, had varying bentonite content by percentage dry weight of sand. The conclusions of this experiment can be applied to the construction of cut off walls used in levees to mitigate groundwater seepage through underlying pervious layers. Eleven sand-bentonite specimens were tested in this study: nine were prepared using dry mixing and two were prepared using suspension mixing. The results do not show strong correlations between hydraulic conductivity and bentonite content, mixing method, clay void ratio, or time. Therefore, further investigation of the results was necessary. The bentonite void ratio (clay void ratio) assumes that bentonite is fully swelled for both blocked and partially blocked flow. Blocked flow occurs when the swelled bentonite blocks all the sand voids, forcing the water to flow within the bentonite voids. However, the results in this study shows that the concept of clay void ratio doesn’t capture the performance of SBMs when the bentonite is partially swelled; therefore, a new concept of effective clay void ratio was introduced to account for bentonite partial swelling. The effective clay void ratio determines the volume of swelled clay as a function of the volume of fully swelled bentonite. This is useful when comparing results with literature or predicting hydraulic conductivity in cases where only partial swelling of bentonite is expected. / text
2

Two-scale geomechanical characterization of sand-bentonite mixtures treated with lime

Hashemi Afrapoli, Mir Amid 30 November 2015 (has links)
The use of lime for soil stabilization has greatly increased since the second half of the 20th century. A lot of research has been conducted to understand the mechanisms of stabilization. These mechanisms are caused by pozzolanic reactions between lime and clay minerals. However, it has not yet been possible to quantify the factors affecting the evolution of these reactions. The variety of soils and the disruptive elements do not allow comparing these soils with each other and giving any quantitative and generalized conclusions in terms of mechanical improvement. The goal of this study is to build a progressive understanding of this phenomenon by avoiding any disruptive elements and controlling most of the parameters. Consequently, the choice is made to study a synthetic soil by controlling its particle size distribution and composition. This soil is a mixture of sand and bentonite taken at different compositions. An analysis of the evolution of lime treatment on such model soils is carried out on two scales: the macroscopic scale and the microscopic scale. The macroscopic scale studies the evolution through unconfined compressive strength, lime consumption, electrical resistivity as well as complementary studies such as sonic and triaxial tests. Results from macroscopic tests show that sand takes an important part into soil stabilization, meaning that a soil containing a lot of clay does not necessary give the best long term mechanical characteristics. Tests that allow a much more detailed comprehension of stabilization are also presented. Microscopic evolution is studied through X-Ray Computed Tomography and Mercury Intrusion Porosimetry. A study on tomographic image treatment has also been carried out to segment the images from its different constituents. / L'utilisation de la chaux pour stabiliser le sol s'est considérablement déve-lop-pée depuis la seconde moitié du 20e siècle. De nombreuses recherches ont vu le jour pour comprendre les mécanis-mes de cette stabilisation. Ces mé-ca-nis-mes sont causés par les réactions pouzzolaniques entre la chaux et les minéraux argileux. Cependant, il n'a pas encore été possible de quantifier totalement les facteurs influençant le déroulement de ces réactions. La diversité des sols et la présence d'éléments perturbateurs ne permettent pas de les comparer et d'en tirer des conclusions quantitatives et généralisables en termes d'amélioration des paramètres mécaniques. Cette étude envisage donc de construire une compréhension progressive du phénomène en ne prenant pas en compte les éléments perturbateurs et en contrôlant à priori un maximum de paramètres. Pour ce faire, il est proposé d'étudier un sol synthétique dont la granulométrie et la composition peuvent être contrôlées. Ce sol est un mélange de sable et de bentonite pris à différentes compositions. Une analyse sur l'évolution du traitement à la chaux est alors effectuée sur ces mélanges sur deux échelles :l'échelle macroscopique et l'échelle microscopique. L'échelle macroscopique envisage des essais de compression simple, de consommation de chaux, de résistivité électrique ainsi que des essais complémentaires tels que les essais soniques et triaxiaux. Les résultats macroscopiques montrent que le sable joue un rôle important dans la stabilisation, le sol présentant la fraction argileuse la plus importante n'ayant pas les meilleures caractéristiques mécaniques à long terme. Les tests permettant une compréhension plus fine de cette stabilisation sont également présentés. L'échelle microscopique est étudiée via la tomographie aux rayons-X et la porosimétrie au mercure. Une étude sur le traitement des images tomographiques est aussi mise en oeuvre pour segmenter de manière adéquate les images de ses différents constituants. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
3

Geotechnical Evaluation Of Illite-Bentonite Mixtures As Liners

Savitha, S 04 1900 (has links) (PDF)
No description available.
4

[en] MECHANICAL BEHAVIOR OF BENTONITE REINFORCED WITH GROUND RUBBER AND PET FLAKES / [pt] COMPORTAMENTO MECÂNICO DE UMA BENTONITA REFORÇADA COM BORRACHA DE PNEU E PET TRITURADO

PHILLIPE MOURAO RIBEIRO 05 February 2019 (has links)
[pt] As atuais técnicas propostas para a destinação final dos pneus não são 100 por cento eficientes, existindo um grande déficit do material em questão. Um outro material que necessita de uma destinação final é o PET (polietileno tereftalato), que hoje em dia, apesar da grande quantidade reciclada, necessita de mais opções de destinação. O estudo apresentado propõe a utilização da borracha triturada (em forma de fibras e em pó - granulometria inferior a 2mm) em diferentes teores (de 5 por cento e 10 por cento, em relação ao peso seco da bentonita) e do PET triturado (na forma de fibras e em pó), como reforço de uma bentonita, para aumento dos parâmetros de resistência desta. O objetivo da pesquisa consiste em avaliar a possibilidade da utilização da borracha e do PET como melhoramento de bentonita em obras geotécnicas, como por exemplo em camadas impermeabilizantes para aterros sanitários, visto que com a utilização da borracha e do PET em obras geotécnicas seria possível a destinação de um grande volume desses materiais. Para o desenvolvimento do estudo experimental foram realizados ensaios de caracterização física e de caracterização mecânica, como ensaios de cisalhamento direto e adensamento. Com resultados obtidos a partir dos ensaios de cisalhamento direto e ensaio de adensamento, pode se perceber que as misturas B90BF10 e B90PETT10 se mostraram mais favoráveis a utilização como barreira impermeabilizando para aterros sanitários, tendo em vista o aumento nas resistências de Pico, pós pico e residual, além do aumento do coeficiente de adensamento (cv) e redução da permeabilidade (k). / [en] The current techniques proposed for the final destination of the tires are not 100 percent efficient, and there is a great deficit of the material in question. Another material that needs an end destination is the PET (polyethylene terephthalate), which nowadays, despite the large amount recycled, needs more disposal options. the present study proposes the use of crushed rubber (in the form of fibers and powder - granulometry of less than 2 mm) in different contents (5 percent and 10 percent, in relation to the dry weight of bentonite) and crushed PET (in the form of fibers and powder), as reinforcement of a bentonite, to increase the resistance parameters of this one. The objective of the research is to evaluate the possibility of using rubber and PET as an improvement of bentonite in geotechnical works, such as waterproofing layers for sanitary landfills, since with the use of rubber and PET in geotechnical works it would be possible to allocate a large volume of these materials. For the development of the experimental study, physical characterization and mechanical characterization tests were performed, such as direct shear tests and densification. With results obtained from the direct shear tests and the densification test, it can be seen that the mixtures B90BF10 and B90PETT10 were more favorable to use as a waterproofing barrier for sanitary landfills, in view of the increase in peak and residual, besides the increase of the coefficient of densification (cv) and reduction of the permeability (k).
5

Characterization and Assessment of Organically Modified Clays for Geo Environmental Applications

Sreedharan, Vandana January 2013 (has links) (PDF)
Clays are used for long for the control of soil and water pollution as they are inexpensive natural materials with a high adsorption capacity for a wide range of pollutants. However their use as components in engineered waste containment systems is often limited when it comes to the control of organic contaminants as the clays are organophobic in nature. Organic modification of the natural clays, by replacing the exchangeable inorganic cations of clay with organic cations, can facilitate to overcome this limitation. On modification the clays become organophilic which can enhance their sorption capacities for organic contaminants. There are several ways by which natural clays can be modified with organic cations. The type of clay, the type of modifier, and the extent of modification play an important role in enhancing the organic sorption capacity. Sorption of organics by the organo clays depends on a large extent on the specific interactions that occur between modified clay and the organic contaminants. The interaction between the clay and the contaminants depend on the physico-chemical properties of modified clay and nature of organic contaminants. Since the properties of natural clays are likely to be altered by the modification a detailed study has been taken up to understand the physico chemical characteristics of organo clays which essentially control their organic sorption efficiency. Apart from bentonite which is widely used as a component of barrier systems, the characteristics of other types of clays on organic modification also needs to be assessed as they can also form part of the containment system frequently. Further the modification of clays is bound to bring in significant changes on their geotechnical properties which may affect their performance when used as barrier material. Only limited research has been conducted in the past on the geotechnical characteristics of organo clay. Therefore extensive studies have been carried out on the evaluation of the geotechnical characteristics of organo clays and the effect of organic modification on important geotechnical properties. Since very often inorganic and organic contaminants can occur simultaneously, admixtures of bentonite and organically modified clays needs to be employed as a part of clay barrier system. Moreover clay alone is very rarely used as component of barrier systems and significant portion of barrier material usually include non clay fraction. Hence studies have been carried out on mixtures containing different proportions of organo clay and bentonite and sand – organo clay / bentonite to evaluate their geotechnical behavior. Important geotechnical properties considered for detailed studies are swelling, compressibility and permeability. Detailed studies on the organic sorption capacities of different organically modified and unmodified clays, mixtures of bentonite and organo clays have also been conducted. The results of studies conducted are presented in 9 chapters. The organization of the thesis is as follows: Chapter 1 gives detailed background information on the sources and hazards of organic contaminants, inadequacy of conventional barriers to contain organic contaminants, the need for modification of natural clays, and the methods for organic modification of clays. Extensive review of literature has highlighted the need to study the effect of organic modification on the physico chemical and geotechnical properties of clay in different pore fluids. Organo clays were prepared using a wide range of clays viz., two types of bentonites of different regions, black cotton clay and commercially available kaolinite with a long chain organic cation. The extent of organic modification was varied by varying the amount of organic cation exchanged as function of total cation exchange capacity of the clays. Detailed physico chemical characterization of these modified and unmodified clays has been carried out with the help of different state of art techniques. The Chapter 2 brings out the effect of modification, role of type of clay and type of modifiers on the characteristics of organo clays by comparing the physico chemical characteristics of different modified and unmodified clays. The organic modification of montmorillonitc clays with long chain organic cation is found to increase their lattice spacing with the amount of modification whereas no such increase was observed on modification of kaolinitic clays even when all the exchangeable inorganic cations were replaced with the organic cations. The XRD studies revealed that the intercalated organic cations of the modified montmorillonite clays assumed mono, bi, or pseudo tri layer depending on the extent of organic modification. Irrespective of the type of clay modified or the modifier used all the organo clays tend to become e hydrophobic, and the surface area of the clays was found to decrease. A comparison of the characteristics of clays modified in laboratory with organo clay obtained commercially revealed that the organic modification was more effective for the organo clay prepared in the laboratory. As the index properties of all clays are generally correlated with their geotechnical characteristics, the effect of organic modification on the index properties of clays was studied. Chapter 3 presents the effect of organic modification on the plasticity and free swell behavior of clays. The index properties of commercially available organo clay and the unmodified clay used for its preparation were evaluated with pore fluids of different dielectric constants. Fluids of varied dielectric constants were chosen as it is one of the important characteristics to understand the behavior of clays. It was observed that the organic modification of clays reduced the plasticity of the clays in water and increased the plasticity in less polar liquids like ethanol. As the organo clays are more hydrophobic, the water holding capacity and plasticity in water is decreased to a large extent. The free swell behavior of clays in different pore fluids were assessed in terms of the modified free swell index. It was found that trend of variation of free swell index with dielectric constant for modified and unmodified clays, as in the case of plasticity is quite opposite. The swell volume of the modified clays was observed to be controlled more by surface solvation than by the development of the inter particle repulsive forces and diffused double layer. The effect of incorporating unmodified bentonite with organically modified clay on the index properties of bentonite has also been studied. The results suggested that the effect of organo clay addition to bentonite was always to reduce its plasticity and free swell in water. However in pore fluids of lower dielectric an increase in the plasticity and free swell was observed with increasing organo clay content in the mixture. This owes to the fact that organo clays can interact strongly with organic fluids, changing its fabric arrangement. As reported from literature it is well established that the swell of clays has conflicting role on the stability and permeability of clay barriers. Swelling of clays is liable to cause a reduction in hydraulic conductivity, enhance the retention times of contaminants and attribute self healing capacity to the liners. Even though extensive studies have been carried out on the swell behaviour and mechanism of swell of unmodified clays, no systematic research is reported on the effect of organic modification on swell behavior of clays especially in the presence of different pore fluids. Chapter 4 describes the results of oedometer swell tests carried out on compacted samples of modified, unmodified clays and organo clay –bentonite mixture in the presence of different pore fluids such as water, ethanol, and their mixture and carbon tetra chloride. Swelling ability of the unmodified clays was not completely suppressed even in the presence of low polar miscible organic liquids as they were molded at water contents corresponding to the optimum moisture content (OMC). The order of the swelling for the unmodified bentonites was in the order of the polarity of the pore fluids used, while the order is reversed upon organic modification of clays. The mechanism of swell in the case of organo clays in organic liquids was related to the solvation of the organic liquid by the intercalated organic cations. And unlike in the case of unmodified clays, the organo clays showed “solvent induced swelling”. Both organic modification and addition of organo clay to bentonite resulted in the suppression of the swelling of clays in water irrespective of the type of modifier or the extent of organic modification. The Chapter 5 gives a detailed account of the compressibility behavior of organically modified clays and its mixtures with bentonite when the samples were molded with water at their respective OMC and later inundated with different fluids. Significant differences were observed on the compressibility of modified and unmodified clay in different fluids. Organic modification of clays reduced their affinity to water and resulted in lowering the compressibility. However there was an increased compressibility for the organo clays when the samples were inundated with non polar liquids and the compression of the organo clay in non polar fluid was not influenced by the nature of clay nor by the type of modifier. The compressibility of the mixtures of organo clay and bentonite in non polar liquids was generally controlled by the organo clay component of the mixture. Organo clays can be recommended as additives in bentonite slurries for construction of slurry walls in order to improve the containment of organics. But the amendment should not compromise the stability and integrity of the slurry walls. Moreover the influence of addition of sorptive material like organo clay on the compressibility behavior of bentonite slurry has received little attention and needs serious consideration as the studies in the previous chapter has brought out that the compressibility of compacted bentonite reduced significantly on organic modification as well as on addition of orgno clay. The Chapter 6 deals with the compressibility behavior of slurries of unmodified bentonite, organo clay, and their mixtures molded with respective liquid limits with water and later inundated with fluids of different dielectric constants as the slurries frequently get in contact with fluids other than water during their operational life. However it was observed that the effect of polarity of the inundating liquid is masked in all the cases by the presence of large amount of initial molding water as the possible specific chemical interactions between organo clay and non polar fluids were restricted in the presence of large amount of molding water. But the slurry samples molded and inundated with non polar carbon tetra chloride showed that the organo clay samples are more compressible when molded with carbon tetrachloride. The chapter also gives a brief discussion on the effect of initial molding water content on the compressibility of organo clays and its mixtures. The compression was found to increase with increase in initial water content irrespective of the type of inundating fluid in agreement with the behavior observed in the case of unmodified clays. However the effect was less pronounced at higher applied pressures. The Chapter 7 brings out the volume change behavior of organo clay amended sand bentonite mixtures (SOB) which form potential barrier to prevent and /or remove contaminants. The compaction behavior of mixtures showed that the degree of compaction achieved was controlled mainly by the sand content and proportion of organo clay in the total fine fraction. The volume change behavior of the SOB mixtures were assessed with the help of oedometer tests conducted on mixtures compacted at OMC conditions and inundated with different fluids same as those used for the swell tests. The samples with higher sand content showed no observable swell when inundated with liquids viz., water, ethanol and their mixture as all the swollen finer particles were accommodated in the voids created by sand particles. However a high swell percentage was measured when samples with high organo clay content were inundated with carbon tetrachloride. Moreover with increased amounts of organo clay in the mix the swelling of bentonite was suppressed and the same trend continued even when the pore fluids were changed to liquids of medium polarity. The organo clays are capable of interacting strongly with non polar liquids like carbon tetra chloride, and hence an appreciable swell was noted when inundated with them especially in the case of mixtures with high organo clay content. The swell behavior of SOB mixtures with lower sand contents were controlled mostly by the interaction of the pore fluid with bentonite and organo clay, interactions between organo clay and bentonite and the polarity of the pore fluid. As the pore fluid polarity was decreased the influence of organo clay component of the mixture was more pronounced. The Chapter 8 explains the hydraulic performance of modified and unmodified clays along with that of the mixtures of organo clay with bentonite and SOB. The coefficient of permeability was calculated from the consolidation data obtained on sample molded at OMC. The permeability variations observed on changing the pore fluids were studied at each applied pressure. The hydraulic conductivity showed a decreasing trend with the increase in applied pressure for all the clays. The specific interactions of the organo clay with the pore fluids and the clay content were found to play a role in controlling the permeability. Limited tests were carried out to simulate a condition where a SOB liner is proposed as a secondary liner below a punctured geo membrane and its hydraulic performance was evaluated with diesel and water as pore fluids. The permeability coefficients with diesel as permeant were observed to decrease with increase in organo clay content of the mixture irrespective of the applied pressure where as the reverse was true when permeated with water. Thus the use of SOB as secondary liner below storage tanks so as to control the transport of contaminants leaking containments systems is established. The organic sorption efficiency of the modified and unmodified clays and the mixture were evaluated in terms of removal of total organic carbon (TOC) and reduction in chemical oxygen demand (COD) of the different leachates including municipal solid waste (MSW) leachate when treated with different types of modified and unmodified clays. All the modified clays irrespective of the type of clay or the type of modifier used showed improved organic sorption capacity. The sorption of TOC was found to follow a linear sorption mechanism in the case of organo clays and the organic contaminants were partitioned on to the organic phase attached to the organo clays. The composition, age and type of leacahte played a major role in controlling the organic sorption efficiency of organo clays in the case of MSW leachates. The studies done with different mixtures of organo clay and bentonite and SOB mixtures clearly proved that the addition of organo clay always enhanced the organic sorption efficiency of the mixtures. The results are discussed in Chapter 9. The Chapter 10 highlights the major conclusions drawn from the study. The study, apart from satisfying the research zeal on understanding the behavior of organo clays, has generated important information useful for the geo environmental engineer to arrive at appropriate design of barrier systems incorporating organically modified clay, based on the characteristics of pore fluid.

Page generated in 0.0646 seconds