• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of Partitioning and Parallel UDF Execution with the SAP HANA Database

Große, Philipp, May, Norman, Lehner, Wolfgang 08 July 2014 (has links) (PDF)
Large-scale data analysis relies on custom code both for preparing the data for analysis as well as for the core analysis algorithms. The map-reduce framework offers a simple model to parallelize custom code, but it does not integrate well with relational databases. Likewise, the literature on optimizing queries in relational databases has largely ignored user-defined functions (UDFs). In this paper, we discuss annotations for user-defined functions that facilitate optimizations that both consider relational operators and UDFs. We believe this to be the superior approach compared to just linking map-reduce evaluation to a relational database because it enables a broader range of optimizations. In this paper we focus on optimizations that enable the parallel execution of relational operators and UDFs for a number of typical patterns. A study on real-world data investigates the opportunities for parallelization of complex data flows containing both relational operators and UDFs.
2

A Study of Partitioning and Parallel UDF Execution with the SAP HANA Database

Große, Philipp, May, Norman, Lehner, Wolfgang 08 July 2014 (has links)
Large-scale data analysis relies on custom code both for preparing the data for analysis as well as for the core analysis algorithms. The map-reduce framework offers a simple model to parallelize custom code, but it does not integrate well with relational databases. Likewise, the literature on optimizing queries in relational databases has largely ignored user-defined functions (UDFs). In this paper, we discuss annotations for user-defined functions that facilitate optimizations that both consider relational operators and UDFs. We believe this to be the superior approach compared to just linking map-reduce evaluation to a relational database because it enables a broader range of optimizations. In this paper we focus on optimizations that enable the parallel execution of relational operators and UDFs for a number of typical patterns. A study on real-world data investigates the opportunities for parallelization of complex data flows containing both relational operators and UDFs.

Page generated in 0.1085 seconds