• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computationally Efficient Explainable AI: Bayesian Optimization for Computing Multiple Counterfactual Explanantions / Beräkningsmässigt Effektiv Förklarbar AI: Bayesiansk Optimering för Beräkning av Flera Motfaktiska Förklaringar

Sacchi, Giorgio January 2023 (has links)
In recent years, advanced machine learning (ML) models have revolutionized industries ranging from the healthcare sector to retail and E-commerce. However, these models have become increasingly complex, making it difficult for even domain experts to understand and retrace the model's decision-making process. To address this challenge, several frameworks for explainable AI have been proposed and developed. This thesis focuses on counterfactual explanations (CFEs), which provide actionable insights by informing users how to modify inputs to achieve desired outputs. However, computing CFEs for a general black-box ML model is computationally expensive since it hinges on solving a challenging optimization problem. To efficiently solve this optimization problem, we propose using Bayesian optimization (BO), and introduce the novel algorithm Separated Bayesian Optimization (SBO). SBO exploits the formulation of the counterfactual function as a composite function. Additionally, we propose warm-starting SBO, which addresses the computational challenges associated with computing multiple CFEs. By decoupling the generation of a surrogate model for the black-box model and the computation of specific CFEs, warm-starting SBO allows us to reuse previous data and computations, resulting in computational discounts and improved efficiency for large-scale applications. Through numerical experiments, we demonstrate that BO is a viable optimization scheme for computing CFEs for black-box ML models. BO achieves computational efficiency while maintaining good accuracy. SBO improves upon this by requiring fewer evaluations while achieving accuracies comparable to the best conventional optimizer tested. Both BO and SBO exhibit improved capabilities in handling various classes of ML decision models compared to the tested baseline optimizers. Finally, Warm-starting SBO significantly enhances the performance of SBO, reducing function evaluations and errors when computing multiple sequential CFEs. The results indicate a strong potential for large-scale industry applications. / Avancerade maskininlärningsmodeller (ML-modeller) har på senaste åren haft stora framgångar inom flera delar av näringslivet, med allt ifrån hälso- och sjukvårdssektorn till detaljhandel och e-handel. I jämn takt med denna utveckling har det dock även kommit en ökad komplexitet av dessa ML-modeller vilket nu lett till att även domänexperter har svårigheter med att förstå och tolka modellernas beslutsprocesser. För att bemöta detta problem har flertalet förklarbar AI ramverk utvecklats. Denna avhandling fokuserar på kontrafaktuella förklaringar (CFEs). Detta är en förklaringstyp som anger för användaren hur denne bör modifiera sin indata för att uppnå ett visst modellbeslut. För en generell svarta-låda ML-modell är dock beräkningsmässigt kostsamt att beräkna CFEs då det krävs att man löser ett utmanande optimeringsproblem. För att lösa optimeringsproblemet föreslår vi användningen av Bayesiansk Optimering (BO), samt presenterar den nya algoritmen Separated Bayesian Optimization (SBO). SBO utnyttjar kompositionsformuleringen av den kontrafaktuella funktionen. Vidare, utforskar vi beräkningen av flera sekventiella CFEs för vilket vi presenterar varm-startad SBO. Varm-startad SBO lyckas återanvända data samt beräkningar från tidigare CFEs tack vare en separation av surrogat-modellen för svarta-låda ML-modellen och beräkningen av enskilda CFEs. Denna egenskap leder till en minskad beräkningskostnad samt ökad effektivitet för storskaliga tillämpningar.  I de genomförda experimenten visar vi att BO är en lämplig optimeringsmetod för att beräkna CFEs för svarta-låda ML-modeller tack vare en god beräknings effektivitet kombinerat med hög noggrannhet. SBO presterade ännu bättre med i snitt färre funktionsutvärderingar och med fel nivåer jämförbara med den bästa testade konventionella optimeringsmetoden. Både BO och SBO visade på bättre kapacitet att hantera olika klasser av ML-modeller än de andra testade metoderna. Slutligen observerade vi att varm-startad SBO gav ytterligare prestandaökningar med både minskade funktionsutvärderingar och fel när flera CFEs beräknades. Dessa resultat pekar på stor potential för storskaliga tillämpningar inom näringslivet.

Page generated in 0.0609 seconds