• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 3
  • Tagged with
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algoritmy pro dekódování Reed-Solomonova protichybového kódu / Algorithms for decoding the Reed-Solomon error control code

Tieftrunk, Tomáš January 2008 (has links)
Thesis discuss about effort to ensure from error, which may occur during transmission over noisy channel. There's used Reed Solomon code. It's block, cyclic and systematic code, which is symbol orientated. Computational process of decoding is mathematically time-consuming. In thesis is closely described Berlekamp-Masey algorithm, used in decoding to evaluate error polynomial. Process is illustrated in application in Matlab. Practical realization uses Reed Solomon code in communication over RS232. Communication is established between computer and microcomputer.
2

Srovnání algoritmů dekódování Reed-Solomonova kódu / Comparison of decoding algorithms of Reed-Solomon code

Šicner, Jiří January 2011 (has links)
The work deals with the encoding and decoding of Reed-Solomon codes. There is generally described algebraic decoding of Reed-Solomon codes, and then described four methods of decoding, namely Massey-Berlekamp algorithm, Euclidean algoritus, Peterson-Gorenstein-Zierler algorithm and the direct method. These methods are then compared, and some of them are implemented in Matlab.
3

Algorithmes de factorisation de polynômes

Lugiez, Denis 28 January 1984 (has links) (PDF)
Description de la factorisation sur Z[×] et de ses problèmes, et des différentes formes de remontées série ou parallèle, linéaire ou quadratique. On donne un algorithme nouveau basé sur la décomposition d'une fraction rationnelle
4

BCH kódy / BCH codes

Frolka, Jakub January 2012 (has links)
The work deals with data security using BCH codes. In the work are described BCH codes in binary and non-binary form, and their most important subclass RS codes. Furthermore, this work describes the method of decoding Peterson-Gorenstein-Zierl, Berlekamp- Massey and Euclidean algorithm. For the presentation of encoding and decoding process, the application was created in Matlab, which has two parts – Learning BCH codes and Simulation of BCH codes. Using the generated application performance of BCH codes was compared at the last part of the work.
5

Calcul rapide sur les matrices structurées : Les matrices de Hankel.

Ben Atti, Nadia 28 November 2008 (has links) (PDF)
Cette thèse présente une contribution à l'amélioration de certains résultats concernant les algorithmes en Algèbre linéaire et plus particulièrement les algorithmes sur les matrices structurées. Nous présentons un nouvel algorithme de diagonalisation par blocs des matrices de Hankel, particulièrement efficace. Dans le cas où la matrice de Hankel correspond à une suite récurrente linéaire, nous retrouvons ainsi l'algorithme de Berlekamp-Massey, mais dans une version simplifiée (plus facile à expliquer et à programmer) et accélérée par des troncatures. En outre notre version permet une gestion dynamique des données. Notre diagonalisation par blocs, qui s'applique sur un corps arbitraire, nous permet de donner une démonstration purement algébrique et simple d'un délicat théorème de Frobenius pour la signature d'une forme de Hankel réelle. Nous donnons également une étude approfondie de l'algorithme d'Euclide signé et de ses versions matricielles pour les matrices de Hankel et de Bezout associées à un couple de polynômes. Nous expliquons les rapports existants entre différents algorithmes connus dans la littérature.
6

Des codes correcteurs pour sécuriser l'information numérique

Herbert, Vincent 05 December 2011 (has links) (PDF)
Les codes correcteurs d'erreurs sont utilisés pour reconstituer les données numériques, qui sont sujettes à des altérations lors de leur stockage et de leur transport. Il s'agit là de l'utilisation principale des codes correcteurs mais ils peuvent encore être employés en cryptographie. Ils sont dans ce contexte un outil permettant, entre autres choses, de chiffrer des données et d'authentifier des personnes. Ces différents aspects sont traités dans ce document. Pour commencer, nous étudions la classe de codes cycliques possédant un ensemble de définition de la forme {1, 2^i+1, 2^j+1}, où i et j désignent des entiers positifs distincts. Nous concentrons notre attention sur la caractérisation des codes trois-correcteurs appartenant à cette classe ainsi que sur la distribution de poids de ces codes. Nous améliorons l'algorithme de Schaub, qui donne une minoration de la distance minimale des codes cycliques. Nous mettons en oeuvre cet algorithme pour calculer l'immunité spectrale de fonctions booléennes. Cette quantité est reliée à la distance minimale de codes cycliques et est importante pour garantir la sécurité dans certains cryptosystèmes de chiffrement à flot. Dans un second temps, nous proposons une solution pour accélérer le calcul des racines de polynômes dans des corps finis de caractéristique deux. Ce calcul est la phase la plus lente du déchiffrement des cryptosystèmes de type McEliece basés sur les codes de Goppa binaires classiques. Nous fournissons une analyse de la complexité de l'algorithme sous-jacent baptisé BTZ. Nous achevons nos travaux par une étude des protocoles d'authentification à bas coût, dérivés du protocole HB, en adoptant une approche basée sur le problème du décodage par syndrome, plutôt que par l'approche standard, fondée sur le problème LPN.
7

Aritmética de corpos finitos : algoritmos para a fatoração polinomial

Noriega Sagastegui, Ruth Noemi January 1996 (has links)
Este trabalho descreve algoritmos algébricos para computação em corpos de Galois GF(q), com q = pn onde pé a característica do corpo, que pode ser arbitrariamente grande. Para fundamentar esse estudo é condensada e apresentada Lo ela. a fena.menta algébrica necessári a. Os corpos ·finitos são caracterizados, é mostrado como construí-los e sua aritmética é analisada. Algoritmos determinísticos e probabilísticos são desenvolvidos para. o cálculo de raízes polinomiais e a. fatoração de polinômios sobre esses corpos. Este trabalho é materializado pela implementação de dois algoritmos, o de Cantor-Zassenhaus e o de Rabin, ambos implementados no Sistema de Computação Algébrica MAPLE V Release 3. / This work elescribes algebraic algorithms for computing in Galois Fielels GF(q), with q = pn, where p is the characteristic of the fielel anel may be arbitrar.ialy large. By justifying this work we give a colection of results about topics of Algebra. Dctcnninistics anel probabilistics a.lgorithms are clevelopeel to compute polynomials roots anel for polynornia.l factorization in OF(q).This work is materializccl by the implementation oi' t.wo algorithms, Cantor-Zasscnhaus's algorithm anel Rabin's algoril. hm, both implemented in MAPLE V Rclease 3 Computer Algebra System.
8

Aritmética de corpos finitos : algoritmos para a fatoração polinomial

Noriega Sagastegui, Ruth Noemi January 1996 (has links)
Este trabalho descreve algoritmos algébricos para computação em corpos de Galois GF(q), com q = pn onde pé a característica do corpo, que pode ser arbitrariamente grande. Para fundamentar esse estudo é condensada e apresentada Lo ela. a fena.menta algébrica necessári a. Os corpos ·finitos são caracterizados, é mostrado como construí-los e sua aritmética é analisada. Algoritmos determinísticos e probabilísticos são desenvolvidos para. o cálculo de raízes polinomiais e a. fatoração de polinômios sobre esses corpos. Este trabalho é materializado pela implementação de dois algoritmos, o de Cantor-Zassenhaus e o de Rabin, ambos implementados no Sistema de Computação Algébrica MAPLE V Release 3. / This work elescribes algebraic algorithms for computing in Galois Fielels GF(q), with q = pn, where p is the characteristic of the fielel anel may be arbitrar.ialy large. By justifying this work we give a colection of results about topics of Algebra. Dctcnninistics anel probabilistics a.lgorithms are clevelopeel to compute polynomials roots anel for polynornia.l factorization in OF(q).This work is materializccl by the implementation oi' t.wo algorithms, Cantor-Zasscnhaus's algorithm anel Rabin's algoril. hm, both implemented in MAPLE V Rclease 3 Computer Algebra System.
9

Aritmética de corpos finitos : algoritmos para a fatoração polinomial

Noriega Sagastegui, Ruth Noemi January 1996 (has links)
Este trabalho descreve algoritmos algébricos para computação em corpos de Galois GF(q), com q = pn onde pé a característica do corpo, que pode ser arbitrariamente grande. Para fundamentar esse estudo é condensada e apresentada Lo ela. a fena.menta algébrica necessári a. Os corpos ·finitos são caracterizados, é mostrado como construí-los e sua aritmética é analisada. Algoritmos determinísticos e probabilísticos são desenvolvidos para. o cálculo de raízes polinomiais e a. fatoração de polinômios sobre esses corpos. Este trabalho é materializado pela implementação de dois algoritmos, o de Cantor-Zassenhaus e o de Rabin, ambos implementados no Sistema de Computação Algébrica MAPLE V Release 3. / This work elescribes algebraic algorithms for computing in Galois Fielels GF(q), with q = pn, where p is the characteristic of the fielel anel may be arbitrar.ialy large. By justifying this work we give a colection of results about topics of Algebra. Dctcnninistics anel probabilistics a.lgorithms are clevelopeel to compute polynomials roots anel for polynornia.l factorization in OF(q).This work is materializccl by the implementation oi' t.wo algorithms, Cantor-Zasscnhaus's algorithm anel Rabin's algoril. hm, both implemented in MAPLE V Rclease 3 Computer Algebra System.

Page generated in 0.0522 seconds