• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantitative Methods for Similarity in Description Logics

Ecke, Andreas 14 June 2016 (has links)
Description Logics (DLs) are a family of logic-based knowledge representation languages used to describe the knowledge of an application domain and reason about it in formally well-defined way. They allow users to describe the important notions and classes of the knowledge domain as concepts, which formalize the necessary and sufficient conditions for individual objects to belong to that concept. A variety of different DLs exist, differing in the set of properties one can use to express concepts, the so-called concept constructors, as well as the set of axioms available to describe the relations between concepts or individuals. However, all classical DLs have in common that they can only express exact knowledge, and correspondingly only allow exact inferences. Either we can infer that some individual belongs to a concept, or we can't, there is no in-between. In practice though, knowledge is rarely exact. Many definitions have their exceptions or are vaguely formulated in the first place, and people might not only be interested in exact answers, but also in alternatives that are "close enough". This thesis is aimed at tackling how to express that something "close enough", and how to integrate this notion into the formalism of Description Logics. To this end, we will use the notion of similarity and dissimilarity measures as a way to quantify how close exactly two concepts are. We will look at how useful measures can be defined in the context of DLs, and how they can be incorporated into the formal framework in order to generalize it. In particular, we will look closer at two applications of thus measures to DLs: Relaxed instance queries will incorporate a similarity measure in order to not just give the exact answer to some query, but all answers that are reasonably similar. Prototypical definitions on the other hand use a measure of dissimilarity or distance between concepts in order to allow the definitions of and reasoning with concepts that capture not just those individuals that satisfy exactly the stated properties, but also those that are "close enough".

Page generated in 0.0731 seconds