1 |
Bi-directional Current-fed Medium Frequency Transformer Isolated AC-DC ConverterEssakiappan, Somasundaram 2010 May 1900 (has links)
The use of high power converters has increased tremendously. Increased demand for
transportation, housing and industrial needs means that more number of power
converters interact with the utility power grid. These converters are non-linear and they
draw harmonic currents, significantly affecting power quality. To reduce harmonics,
filters, power factor correction circuits and capacitor banks are required. And the
development of hybrid technologies and renewable energy power stations trigger a
demand for power converters with bi-directional capabilities. The objective of this thesis
is to develop a high power quality, bi-directional AC-DC power converter that is a
solution to the aforementioned problems.
This thesis studies an existing topology for a high power AC-DC power conversion with
transformer isolation. The topology consists of an uncontrolled rectifier followed by a
DC-DC converter to produce a set voltage output. A design example of the topology is
simulated using the PSIM software package (version 6). Critical performance
characteristics such as power factor and total harmonic distortion are analyzed.
Following that study a new topology is proposed, which is an improvement over the
older design, with reduced power conversion stages. The new topology has a fully
controlled current source Pulse Width Modulation (PWM) rectifier at the front end to
replace the uncontrolled rectifier and DC-DC combination. This topology has multiquadrant
operational capabilities and the controller employs Selective Harmonic
Elimination techniques to produce the programmed PWM switching functions for the
rectifier. A design example of the converter and the digital controller are simulated in
PSIM environment. The converter input current THD (Total Harmonic Distortion) and
input power factor are within IEEE 519 and DoE standards. The converter is simulated
in both first and fourth quadrant operations.
A side-by-side comparison of the two topologies is done with respect to design and
performance features such as power factor, THD, filter size, etc. The new topology
converter provides performance superior to that of the older topology. Finally the thesis
explores possible applications for the converter in power supplies, renewable energy and
hybrid technologies.
|
2 |
High-frequency isolated dual-bridge series resonant DC-to-DC converters for capacitor semi-active hybrid energy storage systemChen, Hao 14 August 2015 (has links)
In this thesis, a capacitor semi-active hybrid energy storage system for electric vehicle is proposed. A DC-to-DC bi-directional converter is required to couple the supercapacitor to the system DC bus.
Through literature reviews, it was decided that a dual-bridge resonant converter with HF transformer isolation is best suited for the hybrid energy storage application. First, a dual-bridge series resonant converter with capacitive output filter is proposed. Modified gating scheme is applied to the converter instead of the 50% duty cycle gating scheme. Comparing to the 50% duty cycle gating scheme where only four switches work in ZVS, The modified gating scheme allows all eight switches working in ZVS at design point with high load level, and seven switches working in ZVS under other conditions. Next, a dual-bridge LCL-type series resonant converter with capacitive output filter is proposed. Similarly, the modified gating scheme is applied to the converter. This converter shows further improvement in ZVS ability. Operating principles, design examples, simulation results and experimental results of the two newly proposed converters are also presented. In the last part of the thesis, a capacitor semi-active hybrid energy storage system is built to test if the proposed converters are compatible to the system. The dual-bridge LCL-type series resonant converter is placed in parallel to the supercapacitor. The simulation and experimental results of the hybrid energy storage system match closely to the theoretical waveforms. / Graduate
|
Page generated in 0.0144 seconds