• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bi-directional Current-fed Medium Frequency Transformer Isolated AC-DC Converter

Essakiappan, Somasundaram 2010 May 1900 (has links)
The use of high power converters has increased tremendously. Increased demand for transportation, housing and industrial needs means that more number of power converters interact with the utility power grid. These converters are non-linear and they draw harmonic currents, significantly affecting power quality. To reduce harmonics, filters, power factor correction circuits and capacitor banks are required. And the development of hybrid technologies and renewable energy power stations trigger a demand for power converters with bi-directional capabilities. The objective of this thesis is to develop a high power quality, bi-directional AC-DC power converter that is a solution to the aforementioned problems. This thesis studies an existing topology for a high power AC-DC power conversion with transformer isolation. The topology consists of an uncontrolled rectifier followed by a DC-DC converter to produce a set voltage output. A design example of the topology is simulated using the PSIM software package (version 6). Critical performance characteristics such as power factor and total harmonic distortion are analyzed. Following that study a new topology is proposed, which is an improvement over the older design, with reduced power conversion stages. The new topology has a fully controlled current source Pulse Width Modulation (PWM) rectifier at the front end to replace the uncontrolled rectifier and DC-DC combination. This topology has multiquadrant operational capabilities and the controller employs Selective Harmonic Elimination techniques to produce the programmed PWM switching functions for the rectifier. A design example of the converter and the digital controller are simulated in PSIM environment. The converter input current THD (Total Harmonic Distortion) and input power factor are within IEEE 519 and DoE standards. The converter is simulated in both first and fourth quadrant operations. A side-by-side comparison of the two topologies is done with respect to design and performance features such as power factor, THD, filter size, etc. The new topology converter provides performance superior to that of the older topology. Finally the thesis explores possible applications for the converter in power supplies, renewable energy and hybrid technologies.
2

High-frequency isolated dual-bridge series resonant DC-to-DC converters for capacitor semi-active hybrid energy storage system

Chen, Hao 14 August 2015 (has links)
In this thesis, a capacitor semi-active hybrid energy storage system for electric vehicle is proposed. A DC-to-DC bi-directional converter is required to couple the supercapacitor to the system DC bus. Through literature reviews, it was decided that a dual-bridge resonant converter with HF transformer isolation is best suited for the hybrid energy storage application. First, a dual-bridge series resonant converter with capacitive output filter is proposed. Modified gating scheme is applied to the converter instead of the 50% duty cycle gating scheme. Comparing to the 50% duty cycle gating scheme where only four switches work in ZVS, The modified gating scheme allows all eight switches working in ZVS at design point with high load level, and seven switches working in ZVS under other conditions. Next, a dual-bridge LCL-type series resonant converter with capacitive output filter is proposed. Similarly, the modified gating scheme is applied to the converter. This converter shows further improvement in ZVS ability. Operating principles, design examples, simulation results and experimental results of the two newly proposed converters are also presented. In the last part of the thesis, a capacitor semi-active hybrid energy storage system is built to test if the proposed converters are compatible to the system. The dual-bridge LCL-type series resonant converter is placed in parallel to the supercapacitor. The simulation and experimental results of the hybrid energy storage system match closely to the theoretical waveforms. / Graduate

Page generated in 0.1341 seconds