Spelling suggestions: "subject:"discontinuous morphology"" "subject:"continuous morphology""
1 |
Structural Battery Electrolytes / Strukturella Batteri-ElektrolyterÖberg, Pernilla, Halvarsson, Amanda, Rune, Julia, Bjerkensjö, Max January 2021 (has links)
Strukturella batterier är multifunktionella; de tillhandahåller lagring av elektrokemisk energi samtidigt som de bidrar med en lastbärande funktion. Tillsammans möjliggör detta att batteriet kan integreras i karossen hos ett elektriskt fordon eller apparat. Denna multifunktionalitet möjliggör således en avsevärd reducering i fordonets vikt. Kompositmaterialet är förstärkt av kolfiberelektroder, innesluten i en elektrolytstruktur. För att förverkliga detta koncept måste batteriets elektrolyt kunna motstå mekanisk belastning, samtidigt som den transporterar joner mellan batteriets elektroder. Denna studie syftar till att bygga vidare på konceptet av fas-separerade polymerelektrolyter, skapade från polymerisationsinducerad fasseparation via termisk härdning, vilket är en teknik utvecklad av Schneider et al. och Ihrner et al. Vidare undersöks effekten av att dels använda en elektrolytlösning baserad på EC:PC, men även att inkorporera tioler till polymernätverket. Tvärbindningsmolekylerna som användes i denna studie inkluderade trimetylolpropan tris(3-merkaptopropionat) (3TMP), pentaerythritol tetrakis(3-merkaptopropionat) (4PER), och dipentaerythritol hexakis-(3-merkaptopropionat) (6DPER). Dessa skiljer sig i antal funktionella tiolgrupper. Konduktivitet, termo-mekanisk prestanda och strukturberoende egenskaper undersöktes genom tre laborativa faser. Den första fasen behandlade inverkan på elektrolytsystemet av ändrat lösningsmedel, tiol-funktionalitet samt tiolgruppförhållandet gentemot allyl gruppen på den primära monomeren. Sampolymeren innehållandes 6DPER uppvisade bäst multifunktionalitet, varpå denna utvecklades vidare i fas två där en optimal sammansättning fastställdes som bestod utav 45 viktprocent jonlösning. I den slutliga fasen konstruerades en halv-cell baserat på den tidigare optimerade elektrolytkompositionen; den uppmätta kapaciteten visar tydlig förbättring jämfört med tidigare forskning. Resultatet som erhölls i denna studie bidrar till förståendet av strukturella batteri-elektrolyter samt den forskning som en dag kan komma att förverkliga strukturella batterier och dess tillämpningskrav. / Structural batteries are multifunctional; providing electrochemical energy storage synergistically with a load-bearing function that enables their integration into the body panels of electric devices and vehicles. Thus, massless energy can be achieved. As a composite material, it is composed of reinforcing carbon fibre electrodes embedded in an electrolyte matrix. To realize this concept, the electrolyte must simultaneously transfer mechanical load and transport ions between electrodes. The following study builds on a phase-separated polymer electrolyte, created using polymerization-induced phase separation via thermal curing, formulated by Schneider et al. and Ihrner et al.. The impact of the incorporation of thiols for copolymerization and as cross-linking agents for the polymer network was researched along with use of an EC:PC-based solvent. The three thiols studied were: trimethylolpropane tris(3-mercaptopropionate) (3TMP), pentaerythritol tetrakis(3-mercaptopropionate) (4PER), and dipentaerythritol hexakis-(3-mercaptopropionate) (6DPER). These differed in regard to the amount of thiol functional groups present. Ionic conductivity, thermo-mechanical performance and structure-property relationships were studied across 3 laboratory phases. The first phase concerned the effect of thiol-functionality, the thiol functional group ratio relative to the allyl group present in the primary monomer, and the solvent interaction. 6DPER was concluded to be the most promising cross-linking agent. During the second phase, the effect of electrolyte content was evaluated with an optimum of 45 weight% determined. The third phase concluded the study, wherein a half-cell was assembled with the optimized electrolyte formulation showing improved capacity relative to previous studies. The results developed here contribute to the understanding of structural battery electrolyte systems and their continued research to meet application demands.
|
Page generated in 0.0923 seconds