• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of the Cyanobacterial Bidirectional Hydrogenase

Oliveira, Paulo January 2008 (has links)
Today, mankind faces a new challenge in energetic terms: a new Industrial Revolution is imperative, already called by some as an Energetic Revolution. This corresponds to a conversion to clean, environmentally friendly and renewable energy sources. In this context, hydrogen arises as a valid alternative, since its combustion produces a considerable amount of energy and releases solely water as a by-product. In the present thesis, two model cyanobacteria, namely Synechocystis sp. strain PCC 6803 and Anabaena/Nostoc sp. strain PCC 7120, were used to examine the hydrogen metabolism. The efforts were focused on to understand the transcription regulation of the hox genes, encoding the structural elements of the bidirectional hydrogenase enzyme. Here, it is shown that such regulation is operated in a very distinct and intricate way, with different factors contributing to its delicate tuning. While in Synechocystis sp. strain PCC 6803 the hox genes were shown to be transcribed as a single operon, in Anabaena/Nostoc sp. strain PCC 7120 they were shown to be transcribed as two independent operons (possibly three). Two transcription factors, LexA and AbrB-like protein, were identified and further characterized in relation to the hydrogen metabolism. Furthermore, different environmental conditions were demonstrated to operate changes on the transcription of the bidirectional hydrogenase genes. In addition, functional studies of three open reading frames found within the hox operon of Synechocystis sp. strain PCC 6803 suggest that this may be a stress responsive operon. However, based on the gained knowledge, it is still not possible to connect the signal transduction pathways, from the environmental signal, through the response regulator, to the final regulation of the hox genes. Nevertheless, the crucial importance of studying the transcription regulation of the different players involved in the hydrogen metabolism is now established and a new era seems to be rising.
2

Improving Cyanobacterial Hydrogen Production through Bioprospecting of Natural Microbial Communities

January 2013 (has links)
abstract: Some cyanobacteria can generate hydrogen (H2) under certain physiological conditions and are considered potential agents for biohydrogen production. However, they also present low amounts of H2 production, a reaction reversal towards H2 consumption, and O2 sensitivity. Most attempts to improve H2 production have involved genetic or metabolic engineering approaches. I used a bio-prospecting approach instead to find novel strains that are naturally more apt for biohydrogen production. A set of 36, phylogenetically diverse strains isolated from terrestrial, freshwater and marine environments were probed for their potential to produce H2 from excess reductant. Two distinct patterns in H2 production were detected. Strains displaying Pattern 1, as previously known from Synechocystis sp. PCC 6803, produced H2 only temporarily, reverting to H2 consumption within a short time and after reaching only moderately high H2 concentrations. By contrast, Pattern 2 cyanobacteria, in the genera Lyngbya and Microcoleus, displayed high production rates, did not reverse the direction of the reaction and reached much higher steady-state H2 concentrations. L. aestuarii BL J, an isolate from marine intertidal mats, had the fastest production rates and reached the highest steady-state concentrations, 15-fold higher than that observed in Synechocystis sp. PCC 6803. Because all Pattern 2 strains originated in intertidal microbial mats that become anoxic in dark, it was hypothesized that their strong hydrogenogenic capacity may have evolved to aid in fermentation of the photosynthate. When forced to ferment, these cyanobacteria display similarly desirable characteristics of physiological H2 production. Again, L. aestuarii BL J had the fastest specific rates and attained the highest H2 concentrations during fermentation, which proceeded via a mixed-acid pathway to yield acetate, ethanol, lactate, H2, CO2 and pyruvate. The genome of L. aestuarii BL J was sequenced and bioinformatically compared to other cyanobacterial genomes to ascertain any potential genetic or structural basis for powerful H2 production. The association hcp exclusively in Pattern 2 strains suggests its possible role in increased H2 production. This study demonstrates the value of bioprospecting approaches to biotechnology, pointing to the strain L. aestuarii BL J as a source of useful genetic information or as a potential platform for biohydrogen production. / Dissertation/Thesis / Ph.D. Molecular and Cellular Biology 2013

Page generated in 0.3505 seconds