1 |
Bidirectional LAO* Algorithm (A Faster Approach to Solve Goal-directed MDPs)Bhuma, Venkata Deepti Kiran 01 January 2004 (has links)
Uncertainty is a feature of many AI applications. While there are polynomial-time algorithms for planning in stochastic systems, planning is still slow, in part because most algorithms plan for all eventualities. Algorithms such as LAO* are able to find good or optimal policies more quickly when the starting state of the system is known.
In this thesis we present an extension to LAO*, called BLAO*. BLAO* is an extension of the LAO* algorithm to a bidirectional search. We show that BLAO* finds optimal or E-optimal solutions for goal-directed MDPs without necessarily evaluating the entire state space. BLAO* converges much faster than LAO* or RTDP on our benchmarks.
|
2 |
Pokročilé plánování cesty robotu (RRT) / Advanced Robot Path Planning (RRT)Knispel, Lukáš January 2012 (has links)
Tato diplomová práce práce se zabývá plánováním cesty všesměrového mobilního robotu pomocí algoritmu RRT (Rapidly-exploring Random Tree – Rychle rostoucí náhodný strom). Teoretická část popisuje základní algoritmy plánování cesty a prezentuje bližší pohled na RRT a jeho potenciál. Praktická část práce řeší návrh a tvorbu v zásadě multiplatformní C++ aplikace v prostředí Windows 7 za použití aplikačního frameworku Qt 4.8.0, která implementuje pokročilé RRT algoritmy s parametrizovatelným řešičem a speciálním dávkovým režimem. Tento mód slouží k testování efektivnosti nastavení řešiče pro dané úlohy a je založen na post-processingu a vizualizaci výstupu měřených úloh pomocí jazyka Python. Vypočtené cesty mohou být vylepšeny pomocí zkracovacích algoritmů a výsledná trajektorie odeslána do pohonů Maxon Compact Drive všesměrové mobilní platformy pomocí CANopen. Aplikace klade důraz na moderní grafické uživatelské rozhraní se spolehlivým a výkonným 2D grafickým engine.
|
Page generated in 0.0779 seconds