1 |
Evaluation of methods for quantifying returns within the premium pension / Utvärdering av metoder för beräkning av internräntani premiepensionenBackman, Emil, Petersson, David January 2020 (has links)
Pensionsmyndigheten's (the Swedish Pensions Agency) current calculation of the internal rate of return for 7.7 million premium pension savers is both time and resource consuming. This rate of return mirrors the overall performance of the funded part of the pension system and is analyzed internally, but also reported to the public monthly and yearly based on differently sized data samples. This thesis aims to investigate the possibility of utilizing other approaches in order to improve the performance of these calculations. Further, the study aims to verify the results stemming from said calculations and investigate their robustness. In order to investigate competitive matrix methods, a sample of approaches are compared to the more classical numerical methods. The approaches are compared in different scenarios aimed to mirror real practice. The robustness of the results are then analyzed by a stochastic modeling approach, where a small error term is introduced aimed to mimic possible errors which could arise in data management. It is concluded that a combination of Halley's method and the Jacobi-Davidson algorithm is the most robust and high performing method. The proposed method combines the speed and robustness from numerical and matrix methods, respectively. The result show a performance improvement of 550% in time, while maintaining the accuracy of the current server computations. The analysis of error propagation suggests the output error to be less than 0.12 percentage points in 99 percent of the cases, considering an introduced error term of large proportions. In this extreme case, the modeled expected number of individuals with an error exceeding 1 percentage point is estimated to be 212 out of the whole population. / Pensionsmyndighetens nuvarande beräkning av internräntan för 7,7 miljoner pensionssparare är både tid- och resurskrävande. Denna avkastning ger en översikt av hur väl den fonderade delen av pensionssystemet fungerar. Detta analyseras internt men rapporteras även till allmänheten varje månad samt årligen baserat på olika urval av data. Denna uppsats avser att undersöka möjligheten att använda andra tillvägagångssätt för att förbättra prestanda för denna typ av beräkningar. Vidare syftar studien till att verifiera resultaten som härrör från dessa beräkningar och undersöka deras stabilitet. För att undersöka om det finns konkurrerande matrismetoder jämförs ett urval av tillvägagångssätt med de mer klassiska numeriska metoderna. Metoderna jämförs i flera olika scenarier som syftar till att spegla verklig praxis. Stabiliteten i resultaten analyseras med en stokastisk modellering där en felterm införs för att efterlikna möjliga fel som kan uppstå i datahantering. Man drar slutsatsen att en kombination av Halleys metod och Jacobi-Davidson-algoritmen är den mest robusta och högpresterande metoden. Den föreslagna metoden kombinerar hastigheten från numeriska metoder och tillförlitlighet från matrismetoder. Resultatet visar en prestandaförbättring på 550 % i tid, samtidigt som samma noggrannhet som ses i de befintliga serverberäkningarna bibehålls. Analysen av felutbredning föreslår att felet i 99 procent av fallen är mindre än 0,12 procentenheter i det fall där införd felterm har stora proportioner. I detta extrema fall uppskattas det förväntade antalet individer med ett fel som överstiger 1 procentenhet vara 212 av hela befolkningen.
|
Page generated in 0.0642 seconds