Spelling suggestions: "subject:"harmonic equations"" "subject:"anharmonic equations""
1 |
Inequalities for vibration and buckling of a clamped plate /McHale, Kimberley Paige Perry, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 63-64). Also available on the Internet.
|
2 |
Inequalities for vibration and buckling of a clamped plateMcHale, Kimberley Paige Perry, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 63-64). Also available on the Internet.
|
3 |
The application of finite difference method and MATLAB in engineering platesWang, Bohe. January 1999 (has links)
Thesis (M.S.)--West Virginia University, 1999. / Title from document title page. Document formatted into pages; contains iv, 87 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 86-87).
|
4 |
Der Einfluss von Eckensingularitäten bei der numerischen Behandlung der biharmonischen GleichungBlum, Heribert. January 1981 (has links)
Thesis (doctoral)--Rheinischen Friedrich-Wilhelm Universität, Bonn, 1981. / Bibliography: p. 78-87.
|
5 |
Estudo de alguns problemas elípticos para o operador biharmônico / Study of some elliptic biharmonic problemsPimenta, Marcos Tadeu de Oliveira 09 May 2011 (has links)
Nesse trabalho estudamos questões de existência, multiplicidade e concentração de soluções de uma classe de problemas elípticos biharmônicos. Nos três primeiros capítulos são utilizados métodos variacionais para estudar a existência, multiplicidade e comportamento assintótico das soluções fracas não-triviais de equações de Schrödinger estacionárias biharmônicas com diferentes hipóteses sobre o potencial e sobre a não-linearidade. No último capítulo, o método de decomposição em cones duais é empregado para obter a existência de três soluções (positiva, negativa e nodal) para uma equação biharmônica / In this work we study some problems on existence, multiplicity and concentration of solutions of biharmonic elliptic equtions. In the first three chapters, variational methods are used to study the existence, multiplicity and the asymptotic behavior of weak nontrivial solutions of stationary Schrödinger biharmonic equations under certain assumptions on the potential function and the nonlinearity. In the last chapter we use variational methods again and also the dual decomposition method to get existence of positive, negative and sign-changing solutions for a biharmonic equation
|
6 |
Estudo de alguns problemas elípticos para o operador biharmônico / Study of some elliptic biharmonic problemsMarcos Tadeu de Oliveira Pimenta 09 May 2011 (has links)
Nesse trabalho estudamos questões de existência, multiplicidade e concentração de soluções de uma classe de problemas elípticos biharmônicos. Nos três primeiros capítulos são utilizados métodos variacionais para estudar a existência, multiplicidade e comportamento assintótico das soluções fracas não-triviais de equações de Schrödinger estacionárias biharmônicas com diferentes hipóteses sobre o potencial e sobre a não-linearidade. No último capítulo, o método de decomposição em cones duais é empregado para obter a existência de três soluções (positiva, negativa e nodal) para uma equação biharmônica / In this work we study some problems on existence, multiplicity and concentration of solutions of biharmonic elliptic equtions. In the first three chapters, variational methods are used to study the existence, multiplicity and the asymptotic behavior of weak nontrivial solutions of stationary Schrödinger biharmonic equations under certain assumptions on the potential function and the nonlinearity. In the last chapter we use variational methods again and also the dual decomposition method to get existence of positive, negative and sign-changing solutions for a biharmonic equation
|
7 |
The Trefftz Method using Fundamental Solutions for Biharmonic EquationsTing-chun, Daniel 30 June 2008 (has links)
In this thesis, the analysis of the method of fundamental solution(MFS) is expanded for biharmonic equations. The bounds of errors are derived for the traditional and the Almansi's approaches in bounded simply-connected domains. The exponential and the polynomial convergence rates are obtained from highly and finite smooth solutions, respectively. Also the bounds of condition number are derived for the disk domains, to show the exponential growth rates. The analysis in this thesis is the first time to provide the rigor analysis of the CTM for biharmonic equations, and the intrinsic nature of accuracy and stability is similar to that of Laplace's equation.
Numerical experiment are carried out for both smooth and singularity problems. The numerical results coincide with the theoretical analysis made. When the particular solutions satisfying the biharmonic equation can be found, the method of particular solutions(MPS) is always superior to MFS, supported by numerical examples. However, if such singular particular solutions near the singular points can not be found, the local refinement of collocation nodes and the greedy adaptive techniques can be used. It seems that the greedy adaptive techniques may provide a better solution for singularity problems. Beside, the numerical solutions by Almansi's approaches are slightly better in accuracy and stability than those by the traditional FS. Hence, the MFS with Almansi's approaches is recommended, due to the simple analysis, which can be obtained directly from the analysis of MFS for Laplace's equation.
|
Page generated in 0.1114 seconds