• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In vivo Pharmacokinetic Interactions of Finasteride and Identification of Novel Metabolites

Lundahl, Anna January 2010 (has links)
The general aim of this thesis was to improve the understanding of the in vivo pharmacokinetics and, in particular, the metabolism of finasteride, a 5α-reductase inhibitor used in the treatment of enlarged prostate glands and male pattern baldness. CYP3A4 has been identified as the major enzyme involved in the sequential metabolism of finasteride to ω-OH finasteride (M1) and ω-COOH finasteride (M3). The consequences of induced and inhibited metabolism on the pharmacokinetics of finasteride and its metabolites were investigated in humans and pigs. Both studies included bile collection. The collected human and pig samples were used for the metabolite identification. As expected, induced metabolism led to reduced plasma exposure of finasteride and inhibited metabolism had the opposite effect. The interactions were investigated in detail and included examination of the biliary pharmacokinetics of finasteride and its metabolites. In pigs, the study included monitoring of the hepatic extraction over time, deconvolution and the development of a semi-physiological model for comparison of the effects on the gut wall and liver metabolism. For M3, the concentration ratios of bile to plasma and the renal clearance indicated that carrier-mediated processes are involved in the biliary and urinary excretion. This was not, however, the case for finasteride. The metabolite, M1, could not be quantified either in humans or pigs. Instead, two other OH metabolites, M1 isomers, were identified in humans. These metabolites were found to undergo glucuronide conjugation. In humans, one glucuronide was identified intact and in pigs, both glucuronides were identified intact in bile and in urine. In addition, a glucuronide of M3 was identified in human bile. In conclusion, advances have been made in the understanding of the pharmacokinetics of finasteride, in particular in relation to the metabolism. Hopefully, the findings of this comprehensive investigation can be applied to other drugs and novel chemical entities.
2

The Hepatobiliary Transport of Rosuvastatin In Vivo

Bergman, Ebba January 2009 (has links)
In vivo studies of hepatobiliary disposition are challenging. The hepatobiliary system is complex, as its physiological localization, complex cellular structure with numerous transporters and enzymes, and the interindividual variability in protein expression and biliary flow will all affect the in vivo disposition of a drug under investigation. The research included in this thesis has focused on the involvement of hepatic transport proteins in the hepatobiliary disposition of rosuvastatin. The impact that several transport inhibitors had on the pharmacokinetics of rosuvastatin was investigated in healthy volunteers and in pigs. The effects were considerable, following inhibition of sinusoidal transport proteins by cyclosporine and rifampicin. These inhibitors significantly reduced the hepatic extraction of rosuvastatin by 50 and 35%, respectively, and the plasma exposure increased by factors of 9.1 and 6.3, respectively. Drug-drug interactions (DDI) resulting in markedly higher plasma exposures are important from a drug safety perspective as increased extrahepatic exposure of statins is associated with an increased risk of severe side-effects, such as myopathy which in rare cases could develop into rhabdomyolysis. The DDI caused by cyclosporine and rifampicin can probably be attributed to inhibition of hepatic uptake transporters. In contrast, inhibition of canalicular transporters by imatinib did not significantly affect the pharmacokinetics of rosuvastatin, which suggests that the intracellular concentration of the inhibitor in the hepatocyte was insufficient to affect the transport of rosuvastatin, or that imatinib is not a sufficiently potent inhibitor in vivo. Furthermore, gemfibrozil administered as a single dose into the jejunum in healthy volunteers and pigs did not affect the plasma or biliary pharmacokinetics of rosuvastatin. The previously reported DDI in humans upon repeated dosing with gemfibrozil might be explained by the accumulation of metabolites able to affect the disposition of rosuvastatin. The investigations presented in this thesis conclude that transport proteins are of considerable importance for the hepatobiliary disposition of rosuvastatin in vivo. The Loc-I-Gut catheter can be applied for the investigation of biliary accumulation and to determine bile specific metabolites, however it has limitations when conducting quantitative measurements. In the porcine model, hepatic bile can be collected for up to six hours and enables the determination of the hepatic extraction in vivo.

Page generated in 0.0784 seconds