• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classifying True and Fake Telecommunication Signals With Deep Learning

Myrberger, Axel, Von Essen, Benjamin January 2020 (has links)
This project aimed to classified artificiality gener-ated,fake, and authentic,true, telecommunication signals, basedupon their frequency response, using methods from deep learn-ing. Another goal was to accomplish this with the least amountof dimension of data possible. The datasets used contained of anequal amount of measured, provided by Ericsson, and generated,by a WINNER II implementation in Matlab, frequency responses.It was determined that a normalized version of the absolute valueof the complex frequency response was enough information for afeedforward network to do a sufficient classification. To improvethe accuracy of the network we did a hyperparameter search,which allowed us to reach an accuracy of 90 percent on our testdataset. The results show that it is possible for neural networksto differentiate between true and fake telecommunication signalsbased on their frequency response, even if it is hard for a humanto tell the difference. / Målet med det här projektet var att klassificera artificiellt genererade signaler, falska, och riktiga, sanna, telekommunikation signaler med hjälp av signalernas frekvens- svar med djup inlärningsmetoder, deep learning. Ett annat mål med projektet var att klassificera signalerna med minsta möjliga antalet dimensioner av datan. Datasetet som användes bestod av till hälften av uppmät data som Ericsson har tillhandahållit, och till hälften av generad data ifrån en WINNER II modell implementerad i Matlab. En slutsats som kunde dras är att en normaliserad version av beloppet av det komplexa frekvenssvaret innehöll tillräckligt med information för att träna ett feedforward nätverk till att uppnå en hög klassificeringssäkerhet. För att vidare öka tillförlitligheten av nätverket gjordes en hyperparametersökning, detta ökade tillförligheten till 90 procent för testdataseten. Resultaten visar att det är möjligt för neurala nätverk att skilja mellan sanna och falska telekommunikations- signaler baserat på deras frekvenssvar, även om det är svårt för människor att skilja signalerna åt. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm

Page generated in 0.0774 seconds