• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento e estudo eletroquímico de eletrodos híbridos do tipo nonwoven de nanotubos de carbono e MnO2 para bateria de íons lítio e supercapacitor / Development and electrochemical study of hybrid nonwoven electrodes of carbon nanotubes and MnO2 for lithium ion battery and supercapacitor

Freitas Neto, Décio Batista de 15 March 2018 (has links)
O presente trabalho está relacionado com o desenvolvimento e análise do desempenho eletroquímico de eletrodos compósitos do tipo nonwoven também chamados de free-standing binder/metal-free electrodes, em eletrólito líquido orgânico que contem íons de lítio. Os eletrodos de excelente resistência mecânica, livre de metais e binder, e que podem conter vários miligramas dematerial eletroativo por cm3, são constituídos por substratos de fibras de carbono derivado de poliacrilonitrila, e a carga eletroativa composta por nanotubos de carbono de parede múltipla (NTC) e nanotubos de MnO2 (NT). Foram utilizados dois tipos de substrato (denominados aqui de feltro e tecido de carbono) de diferentes condutividades eletrônicas e geometrias tridimensionais. O recobrimento das fibras de carbono dos nonwovens com NTC foi realizado por decomposição química de vapor (CVD) mantendo-se constante as variáveis operacionais, o que resultou em NTC do mesmo tipo para todas as amostras e um bom controle da massa depositada. O MnO2 foi incorporado por eletrodeposição em eletrólito aquoso, esse método garantiu um bom controle de massa eletrodepositada de NT. Os eletrodos obtidos foram caracterizados estruturalmente empregando-se microscopia de varredura (MEV), difração de raios-X e microscopia Raman. Para análise de desempenho eletroquímico e mecanismo de armazenagem/conversão de energia nos eletrodos empregadas as técnicas de voltametria e cronopotenciometria cíclicas. Os resultados mostram que os eletrodos compósitos são híbridos, podem atuar como capacitores e eletrodos de baterias de íons lítio. As metodologias aplicadas se mostram extremamente reprodutíveis reprodutivas e controláveis. Depedendo das composições e combinações foi possível obter capacidades específicas associadas com armazenagem/estocagem de lítio em altas densidades de corrente (A/g) na janela de potencial de 0,005 - 3,5V vs Li/Li+ (por exemplo, 800 mAh/g em 1 A/g, taxa C-rate = 1,25C, 400 mAh/g em 2,66A/g, taxa C-rate = 5C). A eficiência faradaica para o primeiro ciclo carga/descarga variou entre 83% e 54%, dependendo da quantidade de MnO2 e da corrente aplicada. Foi observado que é possível melhorar ainda mais os resultados com adição de outros constituintes, como por exemplo, a adição de partículas de prata (<1 % em peso). Neste caso os eletrodos forneceram eficiência faradaica de 83%, 1.100 mAh/g em 1,7A/g, em taxa C-rate = 1,66C e 550 mAh/g em 2,8A/g em taxa C-rate = 5C). Em termos de capacitância os compósitos também se mostram muito positivos. Valores de capacitância da ordem de 180F/g foram facilmente obtidos em tempos de descarga de 58s e num intervalo de potencial em relação ao Li/Li+ (~3,05 V vs H2/H+) de 1,4 a 3,8V vs Li/Li+, o que permite gerar densidade de energia e potência da ordem de 63 Wh/kg e 3,6 kW/kg respectivamente. Os eletrodos estudados podem atuar como eletrodo em baterias de íons lítio e em dispositivos de capacitores, o que significa que pode ser útil para o desenvolvimento de sistemas híbridos de armazenamento/conversão de energia, particularmente, de sistemas híbridos bipolar bateria-supercapacitor. / The present work is correlated with the development and electrochemical analisys of a nonwoven kind of electrode, also called as free-standing binder/metal-free electrodes, into lithium-ion liquid organic electrolyte, whereas the constituents are the substrate made of carbon fiber derived from carbonization of polyacrylonitrile, and the electroactive material which are defective multi-walled carbon nanotubes (MWCNT) and MnO2 nanotubes. Two types of nonwoven substrates (here denominated felt and cloth) with different electronic conductivity and three-dimensional geometry were employed. MWCNT coating of the nonwoven carbon fibers was achieved with chemical vapor decomposition (CVD) of methanol at same growth conditions, which resulted in electrodes with same type of MWCNT and a good control of the deposited mass. MnO2 was incorporaded by electrodeposition in aqueous electrolyte and this methodology was found appropriate to provide electrodes with same MnO2 NT loading, although the structural phase of MnO2 was affect by nonwoven substrate type. The robusts electrodes able to support several miligrams of electroactive material per cm3 obtained were structurally characterized using scanning electron microscopy (SEM, TEM), X-ray diffraction and Raman microscopy. It was employed cyclic voltammetry at different scan rate and chronopotentiometry (discharge/charge curves at galvanostatic conditions) aiming the understanding of the electrochemical performance and mechanism of energy storage/conversion of MnO2/MWCNT coated nonwoven electrodes. The results show that the composite electrode is hybrid, can act like capacitor or lithium ion battery electrode. It can provide very high specific capacity associated with storage/extraction of Li same in elevated gravimetric current density of A/g in the potential window of 0.005-3.5V vs Li/Li+ (e.g 800 mAh/g at 1 A/g, rate = 1,25C, 400 mAh/g at 2,66A/g, rate = 5C). The Faradic efficiency measure during the first charge/discharge cycle was between 83% to 54% depending on amount of MnO2 constituent and applied current. It was also observed a gain in the electrochemical performance of MnO2/MWCNT coated nonwoven electrode with Ag nanoparticles addition (about 1% wt). With presence of Ag constituent into the composites nonwovens it was found for instance 83% of Faradic efficiency at 1st discharge/charge cycle, 1,100 mAh/g at 1,7A/g rate = 1,66C and 550 mAh/g at 2,8A/g rate = 5C. In terms of capacitance the nonwoven were able to provide values like 180 F/g during 58s in high voltage window (1.4-3.8V vs LI/Li+) which correspond to energy and power density of 63 Wh/kg e 3.6 kW/kg, respectively. The electrodes developed in the present study could therefore act both as an electrode for Li intercalation and for capacitors devices, which means that it can be useful for the development of hybrid energy storage/conversion systems, particularly, bipolar battery-supercapacitor hybrid single.
2

Desenvolvimento e estudo eletroquímico de eletrodos híbridos do tipo nonwoven de nanotubos de carbono e MnO2 para bateria de íons lítio e supercapacitor / Development and electrochemical study of hybrid nonwoven electrodes of carbon nanotubes and MnO2 for lithium ion battery and supercapacitor

Décio Batista de Freitas Neto 15 March 2018 (has links)
O presente trabalho está relacionado com o desenvolvimento e análise do desempenho eletroquímico de eletrodos compósitos do tipo nonwoven também chamados de free-standing binder/metal-free electrodes, em eletrólito líquido orgânico que contem íons de lítio. Os eletrodos de excelente resistência mecânica, livre de metais e binder, e que podem conter vários miligramas dematerial eletroativo por cm3, são constituídos por substratos de fibras de carbono derivado de poliacrilonitrila, e a carga eletroativa composta por nanotubos de carbono de parede múltipla (NTC) e nanotubos de MnO2 (NT). Foram utilizados dois tipos de substrato (denominados aqui de feltro e tecido de carbono) de diferentes condutividades eletrônicas e geometrias tridimensionais. O recobrimento das fibras de carbono dos nonwovens com NTC foi realizado por decomposição química de vapor (CVD) mantendo-se constante as variáveis operacionais, o que resultou em NTC do mesmo tipo para todas as amostras e um bom controle da massa depositada. O MnO2 foi incorporado por eletrodeposição em eletrólito aquoso, esse método garantiu um bom controle de massa eletrodepositada de NT. Os eletrodos obtidos foram caracterizados estruturalmente empregando-se microscopia de varredura (MEV), difração de raios-X e microscopia Raman. Para análise de desempenho eletroquímico e mecanismo de armazenagem/conversão de energia nos eletrodos empregadas as técnicas de voltametria e cronopotenciometria cíclicas. Os resultados mostram que os eletrodos compósitos são híbridos, podem atuar como capacitores e eletrodos de baterias de íons lítio. As metodologias aplicadas se mostram extremamente reprodutíveis reprodutivas e controláveis. Depedendo das composições e combinações foi possível obter capacidades específicas associadas com armazenagem/estocagem de lítio em altas densidades de corrente (A/g) na janela de potencial de 0,005 - 3,5V vs Li/Li+ (por exemplo, 800 mAh/g em 1 A/g, taxa C-rate = 1,25C, 400 mAh/g em 2,66A/g, taxa C-rate = 5C). A eficiência faradaica para o primeiro ciclo carga/descarga variou entre 83% e 54%, dependendo da quantidade de MnO2 e da corrente aplicada. Foi observado que é possível melhorar ainda mais os resultados com adição de outros constituintes, como por exemplo, a adição de partículas de prata (<1 % em peso). Neste caso os eletrodos forneceram eficiência faradaica de 83%, 1.100 mAh/g em 1,7A/g, em taxa C-rate = 1,66C e 550 mAh/g em 2,8A/g em taxa C-rate = 5C). Em termos de capacitância os compósitos também se mostram muito positivos. Valores de capacitância da ordem de 180F/g foram facilmente obtidos em tempos de descarga de 58s e num intervalo de potencial em relação ao Li/Li+ (~3,05 V vs H2/H+) de 1,4 a 3,8V vs Li/Li+, o que permite gerar densidade de energia e potência da ordem de 63 Wh/kg e 3,6 kW/kg respectivamente. Os eletrodos estudados podem atuar como eletrodo em baterias de íons lítio e em dispositivos de capacitores, o que significa que pode ser útil para o desenvolvimento de sistemas híbridos de armazenamento/conversão de energia, particularmente, de sistemas híbridos bipolar bateria-supercapacitor. / The present work is correlated with the development and electrochemical analisys of a nonwoven kind of electrode, also called as free-standing binder/metal-free electrodes, into lithium-ion liquid organic electrolyte, whereas the constituents are the substrate made of carbon fiber derived from carbonization of polyacrylonitrile, and the electroactive material which are defective multi-walled carbon nanotubes (MWCNT) and MnO2 nanotubes. Two types of nonwoven substrates (here denominated felt and cloth) with different electronic conductivity and three-dimensional geometry were employed. MWCNT coating of the nonwoven carbon fibers was achieved with chemical vapor decomposition (CVD) of methanol at same growth conditions, which resulted in electrodes with same type of MWCNT and a good control of the deposited mass. MnO2 was incorporaded by electrodeposition in aqueous electrolyte and this methodology was found appropriate to provide electrodes with same MnO2 NT loading, although the structural phase of MnO2 was affect by nonwoven substrate type. The robusts electrodes able to support several miligrams of electroactive material per cm3 obtained were structurally characterized using scanning electron microscopy (SEM, TEM), X-ray diffraction and Raman microscopy. It was employed cyclic voltammetry at different scan rate and chronopotentiometry (discharge/charge curves at galvanostatic conditions) aiming the understanding of the electrochemical performance and mechanism of energy storage/conversion of MnO2/MWCNT coated nonwoven electrodes. The results show that the composite electrode is hybrid, can act like capacitor or lithium ion battery electrode. It can provide very high specific capacity associated with storage/extraction of Li same in elevated gravimetric current density of A/g in the potential window of 0.005-3.5V vs Li/Li+ (e.g 800 mAh/g at 1 A/g, rate = 1,25C, 400 mAh/g at 2,66A/g, rate = 5C). The Faradic efficiency measure during the first charge/discharge cycle was between 83% to 54% depending on amount of MnO2 constituent and applied current. It was also observed a gain in the electrochemical performance of MnO2/MWCNT coated nonwoven electrode with Ag nanoparticles addition (about 1% wt). With presence of Ag constituent into the composites nonwovens it was found for instance 83% of Faradic efficiency at 1st discharge/charge cycle, 1,100 mAh/g at 1,7A/g rate = 1,66C and 550 mAh/g at 2,8A/g rate = 5C. In terms of capacitance the nonwoven were able to provide values like 180 F/g during 58s in high voltage window (1.4-3.8V vs LI/Li+) which correspond to energy and power density of 63 Wh/kg e 3.6 kW/kg, respectively. The electrodes developed in the present study could therefore act both as an electrode for Li intercalation and for capacitors devices, which means that it can be useful for the development of hybrid energy storage/conversion systems, particularly, bipolar battery-supercapacitor hybrid single.
3

Studies of Rechargeable Lithium-Sulfur Batteries

Cui, Yi 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The studies of rechargeable lithium-sulfur (Li-S) batteries are included in this thesis. In the first part of this thesis, a linear sweep voltammetry method to study polysulfide transport through separators is presented. Shuttle of polysulfide from the sulfur cathode to lithium metal anode in rechargeable Li-S batteries is a critical issue hindering cycling efficiency and life. Several approaches have been developed to minimize it including polysulfide-blocking separators; there is a need for measuring polysulfide transport through separators. We have developed a linear sweep voltammetry method to measure the anodic (oxidization) current of polysulfides crossed separators, which can be used as a quantitative measurement of the polysulfide transport through separators. The electrochemical oxidation of polysulfide is diffusion-controlled. The electrical charge in Coulombs produced by the oxidation of polysulfide is linearly related to the concentration of polysulfide within a certain range (≤ 0.5 M). Separators with a high porosity (large pore size) show high anodic currents, resulting in fast capacity degradation and low Coulombic efficiencies in Li-S cells. These results demonstrate this method can be used to correlate the polysulfide transport through separators with the separator structure and battery performance, therefore provide guidance for developing new separators for Li-S batteries. The second part includes a study on improving cycling performance of Li/polysulfide batteries by applying a functional polymer on carbon current collector. Significant capacity decay over cycling in Li-S batteries is a major impediment for their practical applications. Polysulfides Li2Sx (3 < x ≤ 8) formed in the cycling are soluble in liquid electrolyte, which is the main reason for capacity loss and cycling instability. Functional polymers can tune the structure and property of sulfur electrodes, hold polysulfides, and improve cycle life. We have examined a polyvinylpyrrolidone-modified carbon paper (CP-PVP) current collector in Li/polysulfide cells. PVP is soluble in the electrolyte solvent, but shows strong affinity with lithium polysulfides. The retention of polysulfides in the CP-PVP current collector is improved by ~50%, which is measured by a linear sweep voltammetry method. Without LiNO3 additive in the electrolyte, the CP-PVP current collector with 50 ug of PVP can significantly improve cycling stability with a capacity retention of > 90% over 50 cycles at C/10 rate. With LiNO3 additive in the electrolyte, the cell shows a reversible capacity of > 1000 mAh g ⁻¹ and a capacity retention of > 80% over 100 cycles at C/5 rate. The third part of this thesis is about a study on a binder-free sulfur/carbon composite electrode prepared by a sulfur sublimation method for Li-S batteries. Sulfur nanoparticles fill large pores in a carbon paper substrate and primarily has a monoclinic crystal structure. The composite electrode shows a long cycle life of over 200 cycles with a good rate performance in Li-S batteries.
4

The O2 electrode performance in the Li-O2 battery

Liu, Jia January 2015 (has links)
Li-O2 batteries have been attracting increasing attention and R&amp;D efforts as promising power sources for electric vehicles (EVs) due to their significantly higher theoretical energy densities compared to conventional Li-ion batteries. The research presented in this thesis covers the investigation of factors influencing the decomposition of Li2O2, the development of highly active electrocatalysts, and the design of low-cost and easy-operation binder-free O2 electrodes for Li-O2 batteries. Being the main technique, SR-PXD was used both as a continuous light source to advance the electrochemical decomposition of Li2O2 under the X-ray illumination and an operando tool that allowed us to probe the degradation of Li2O2. Since XRD was intensively used in my thesis work, the effect of X-ray irradiation on the stability of Li2O2 was studied. The accelerating effect of X-rays on the electrochemical decomposition of Li2O2 was, for the first time, explored. The electrochemical decomposition rate of Li2O2 was proportional to the X-ray intensity used. It is proposed that the decomposition might involve a three-step reaction with [Li2O2]x+ and Li2-xO2* as intermediates, which followed pseudo-zero-order kinetics. Then, three electrocatalysts (Pt/MNT, Ru/MNT and Li2C8H2O6) were developed, which exhibited good electrocatalytic performances during the OER. Their activities were evaluated by following the Li2O2 decomposition in electrodes during the charging processes. In addition, the time-resolved OER kinetics for the electrocatalyst-containing Li-O2 cells charged galvanostatically and potentiostatically was systematically investigated using operando SR-PXD. It was found that a small amount of Pt or Ru decoration on the MNTs enhanced the OER efficiency in a Li-O2 cell. The Li2O2 decomposition of an electrode with 5 wt% Pt/MNT, 2 wt% Ru/MNT or Li2C8H2O6 in a Li-O2 cell followed pseudo-zero-order kinetics. Finally, a novel binder-free NCPE for Li-O2 batteries was presented. It displayed a bird’s nest microstructure, which could provide the self-standing electrode with considerable mechanic durability, fast O2 diffusion and enough space for the discharge product deposition. The NCPE contained N-containing functional groups, which may promote the electrochemical reactions.
5

Einsatz von Mediatoren bei der enzymatischen Aktivierung der fasereigenen Bindekräfte zur Herstellung von enzymgebundenen, bindemittelfreien Holzwerkstoffen / Application of mediators in enzymatical activation of fiberself cohesions for the production of enzyme-bonded, binder-free derived timber products

Euring, Markus 20 June 2008 (has links)
No description available.

Page generated in 0.0399 seconds