Spelling suggestions: "subject:"binder""
11 |
Some aspects of film formation from pigmented latex systems /Ding, Tianhua, January 2003 (has links)
Thesis (Ph. D.)--Lehigh University, 2004. / Includes bibliographical reference and vita.
|
12 |
Evaluation of binder grades on rutting performanceNallamothu, Sri Harsha. January 2003 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains viii, 69 p. : ill. (some col.), col. maps. Includes abstract. Includes bibliographical references (p. 55-58).
|
13 |
An investigation into a new binder for hydraulic backfill /Fadaei Kermani, Mehrdad. January 2008 (has links)
Over the last three decades, mine backfilling has progressively integrated into underground mining operations. The high stresses associated with mining at depth in the Canadian Shield, also requires innovative approaches to mine backfilling to withstand the loading both during and after mining operations. Not only new or modified minefill systems are required, but also new techniques are needed to increase the speed of the mining cycle for optimizing the mining operation. Three major purposes of mine backfill are known as (1) providing safe working condition, (2) maximizing ore recovery and (3) improving underground stability. Therefore, mine backfill has contributed greatly to the economics and environmental aspects of mining industry. / In order to improve the mechanical behaviour of fill, cementitious materials are used. These cementitious materials are expensive. As a result the consumption of these cementitious materials has to be optimized and minimized in a way that the required strength is met. The objective of this research is to investigate a new type of backfill, which is known as gelfill. Gelfill binders usually consist of alkali activators such as sodium silicate and the other cementitious materials. Sodium silicate has been used in waste treatment and activation of artificial pozzolans such as blast furnace slag and fly ash. / The work presented in this thesis is to evaluate the use of sodium silicate in gelfill. Consequently, the influence of mixing time, mixing sequence and curing time are studied on gelfill and silica sand hydraulic backfill. Various tests including unconfined and confined compressive strength were conducted in order to investigate the mechanical behaviour of samples. By conducting mercury intrusion porosimetery (MIP) and scanning electron microscopy (SEM), microstructure and mineralogical properties of specimens were studied. / The result of this thesis demonstrates that gelfill compared with silica sand hydraulic backfill has better mechanical properties. In addition, other variables, including: mixing time and sequence, have a significant effect on gelfill.
|
14 |
Some aspects of the injection moulding of alumina and other engineering ceramicsYouseffi, M. January 1992 (has links)
The literature concerning the injection moulding of engineering ceramics has been reviewed. This indicated that a number of claims had been made for the successful use of different organic binders during moulding and their removal prior to sintering. However, many of the claims were not supported by detailed/exact eScperimental evidence as to powder-binder compositions, moulding conditions, moulded properties, debinding times/cycles, or details of the structure and properties of the solid ceramic bodies produced. From the available information it was clear that there were few systematic and scientific investigations concerning the understanding of each stage of the injection moulding process. The present research programme has been carried out in two phases as follows. The first phase was concerned with the reinvestigation and re-evaluation of binder systems claimed to be successful for the injection moulding of alumina ceramics. The binders re-investigated included the thermoplastic-based binders such as polystyrene, polyacetal and atactic polypropylene and the water-based methylcellulose (Rivers) binder system. Alumina was chosen as the main powder to be investigated due to its simple handling and, highest applications amongst ceramic materials and on the basis that there is incomplete published work for almost every step of the injection moulding process. During the first stage of this work the optimum properties such as powder-binder compositions, mixing and moulding conditions, debinding properties, green and sintered densities provided by each binder system were determined. The results of these investigations showed that all the previous (re-evaluated) binder systems had major limitations and disadvantages. These included low volume loading (64 % maximum) of the alumina powder resulting in rather low sintered densities (96 % maximum-of theoretical density) and very long debinding times in the case of the thermoplastic-based binders. it ry low alumina volume loading (55 % maximum resulting in a 94 % . sintered theoretical density) and long moulding cycle time (- 5 min) along with adhesion and distortion problems during demoulding occurred in the case of the water-based methylcellulose binder system. Further work did not appear worthwhile. The newly developed binder systems have been used with a number of other powders such as zirconia, silicon nitride, silicon carbide, tungsten carbide-6 weight % cobalt and iron-2 weight % nickel, to establish- whether injection moulding is feasible. Optimum properties such as powder volume loadings, mixing, moulding, demoulding, moulded densities, debinding and some sintered density results showed that these new binder systems can also be used successfully for the injection moulding of other ceramic and metallic powders, although a fuller evaluation of the properties such as optimum sintered densities and mechanical properties is required.
|
15 |
An investigation into the effects of binder viscosity, shear rate, mixing time, and primary particle size on the spreading of a liquid in a particle bedSimmons, Tyler. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2008. / Title from document title page. Document formatted into pages; contains vii, 70 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 57-59).
|
16 |
Supercritical extraction of binder from multilayer ceramic capacitorsKrishnamurthy, Kumar, January 2008 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2008. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 12, 2009) Vita. Includes bibliographical references.
|
17 |
An investigation into a new binder for hydraulic backfill /Fadaei Kermani, Mehrdad January 2008 (has links)
No description available.
|
18 |
Studies On HTPB Based Copolyurethanes As Solid Propellant Binders : Characterization And Modeling Of Network ParametersSekkar, V 11 1900 (has links) (PDF)
No description available.
|
19 |
Investigations on Azide Functional Polymers as Binders for Solid PropellantsReshmi, S January 2014 (has links) (PDF)
This thesis contains investigations in the area of polymers herein propellants binders are modified functionally to meet the requirements of future energetic propellants. Chapter 1 contains a broad introduction to the area of recent advances in solid propellants and the numerous applications of ‘Click Chemistry’. Chapters 2 details the materials, characterization tools and the experimental techniques employed for the studies. This is followed by Chapter 3, 4, and 5 which deals with functional modification of various propellants binders, their characterisation and evaluation in propellant formulations. Chapter 6 details with the thermal decomposition of diazides and its reaction with alkenes.
The advent of modern rockets has opened a new era in the history of space exploration as well as defence applications. The driving force of the rocket emanates from the propellant – either solid or liquid. Composite solid propellants find an indispensable place, in today’s rockets and launch vehicles because of the inherent advantages such as high reliability, easy manufacturing, high thrust etc. The composite propellant consisting of inorganic oxidiser like ammonium perchlorate, (AP), ammonium nitrate (AN) etc), metallic fuel (aluminium powder, boron etc) and polymeric fuel binder (hydroxyl terminated polybutadiene-HTPB, polybutadiene-acrylic acid-acrylonitrile PBAN, glycidyl azide polymer (GAP), polyteramethylene oxide (PTMO) etc. is used in igniters, boosters, upper stage motors and special purpose motors in large launch vehicles.
Large composite solid propellant grains or rocket motors in particular, demand adequate mechanical properties to enable them to withstand the stresses imposed during operation, handling, transportation and motor firing. They should also have a reasonably long ‘potlife’ to provide sufficient window for processing operations such as mixing and casting which makes the selection of binder with appropriate cure chemistry more challenging. In all composite solid propellants currently in use, polymers perform the role of a binder for the oxidiser, metallic fuel and other additives. It performs the dual role of imparting dimensional stability to the composite, provides structural integrity and good mechanical properties to the propellant besides acting as a fuel to impart the required energetics.
Conventionally, the terminal hydroxyl groups in the binders like GAP, PTMO and HTPB are reacted with diisocyanates to form a polyurethane network, to impart the necessary mechanical properties to the propellant. A wide range of diisocyantes such as tolylene diisocyanate (TDI) and isophorone diisocyanate (IPDI) are used for curing of these binders. However, the incompatability of isocyanates with energetic oxidisers like ammonium dinitramide (ADN), hydrazinium nitroformate (HNF), short ‘potlife’ of the propellant slurry and undesirable side reactions with moisture are limiting factors which adversely affect the mechanical properties of curing binders through this route.
The objective of the present study is to evolve an alternate approach of curing these binders is to make use of the 1,3 dipolar addition reactions between azide and alkyne groups which is a part of ‘Click chemistry’. This can be accomplished by the reaction of azide groups of GAP with triple bonds of alkynes and reactions of functionally modified HTPB/PTMO (azide/alkyne) to yield 1,2,3 -triazole based products. This offers an alternate route for processing of solid propellants wherein, the cured resins that have improved mechanical properties, better thermal stability and improved ballistic properties in view of the higher heat of decomposition resulting from the decomposition of the triazole groups.
GAP is an azide containing energetic polymer. The azide groups can undergo reaction with alkynes to yield triazoles. In, Chapter 3 the synthesis and characterisation of various alkynyl compounds including bis propargyl succinate (BPS), bis propargyl adipate (BPA), bis propargyl sebacate (BPSc.) and bis propargyl oxy bisphenol A (BPB) for curing of GAP to yield triazoles networks are studied. The mechanism of the curing reaction of GAP with these alkynyl compounds was elucidated using a model compound viz. 2-azidoethoxyethane (AEE). The reaction mechanism has been analysed using Density Functional Theory (DFT) method. DFT based theoretical calculations implied marginal preference for 1, 5 addition over the 1, 4 addition for the uncatalysed cycloaddition reaction between azide and alkyne group. The detailed characterisation of these systems with respect to the cure kinetics, mechanical properties, dynamic mechanical behaviour and thermal decomposition characteristics were done and correlated to the structure of the network. The glass transition temperature (Tg), tensile strength and modulus of the system increased with crosslink density which in turn is, controlled by the azide to alkyne molar stoichiometry. Thermogravimetic analysis (TGA) showed better thermal stability for the GAP-triazole compared to GAP based urethanes. Though there have been a few reports on curing of GAP with alkynes, it is for the first time that a detailed characterisation of this system with respect to the cure kinetics, mechanical, dynamic mechanical, thermal decomposition mechanism of the polymer is being reported.
To extent the concept of curing binders through 1,3 dipolar addition reaction, the binder HTPB as chemically transformed to propargyloxy carbonyl amine terminated polybutadiene (PrTPB) with azidoethoxy carbonyl amine terminated polybutadiene (AzTPB) and propargyloxy polybutadiene (PTPB). Similarly, PTMO was convnerted to propargyloxy polytetramethylene oxide (PTMP). Triazole-triazoline networks were derived by the reaction of the binders with alkyne/azide containing curing agents. The cure characteristics of these polymers (PrTPB with AzTPB, PTPB with GAP and PTMP with GAP) were studied by DSC. The detailed characterisations of the cured polymers for were done with respect to the, mechanical, dynamic mechanical behaviour and thermal decomposition characteristics were done.
Propellant level studies were done using the triazoles derived from GAP, PrTPB-AzTPB, PTPB and PTMP as binder, in combination with ammonium perchlorate as oxidiser. The propellants were characterised with respect to rheological, mechanical, safety, as well as ballistic properties. From the studies, propellant formulations with improved energetics, safety characteristics, processability and mechanical properties as well defect free propellants could be developed using novel triazole crosslinked based binders.
Chapter 6, is aimed at understanding the mechanism of thermal decomposition of diazido compounds in the first section. For this, synthesis and characterisation of a diazido ester 1,6 –bis (azidoacetoyloxy) hexane (HDBAA) was done. There have been no reports on the thermal decomposition mechanism of diazido compounds, where one azide group may influence the decomposition of the other. The thermal decomposition mechanism of the diazido ester were theoretically predicted by DFT method and corroborated by pyrolysis-GC-MS studies. In the second section of this chapter, the cure reaction of the diazido ester with the double bonds of HTPB has been investigated. The chapter 6B reports the mechanism of Cu (I) catalysed azide-alkene reaction validated using density functional theory (DFT) calculations in isomers of hexene (cis-3-hexene, trans-3-hexene and 2-methy pentene: model compound of HTPB) using HDBAA. This the first report on an isocyanate free curing of HTPB using an azide.
Chapter 7 of the thesis summarizes the work carried out, the highlights and important findings of this work. The scope for future work such as development of high performance eco-friendly propellants based on triazoles in conjunction with chlorine-free oxidizer like ADN, synthesis of compatible plasticisers and suitable crosslinkers have been described.
This work has given rise to one patent, three international publications and four papers in international conferences in the domain.
|
20 |
Using by-product industrial materials to replace all cement in construction productsKarami, S. January 2008 (has links)
At present, cementitious binders are used extensively in the construction industry and principally in concretes. They are also used in some applications like ground improvement. In these applications the cost of the binder, typically Portland cement, accounts for a considerable proportion of the total cost of the technique. In addition to the financial cost there is also the environmental impact of quarrying and processing of raw materials to produce Portland cements. Gypsum waste, by-pass dust and fly ash by-products have been identified as the alternative sources of cementitious binder. Using these materials has two advantages: they have little or no production cost; and the re-use of such material would negate the need for expensive disposal. This thesis describes a programme of laboratory testing and study on the possible field trials to investigate the possibility of using mentioned by-product materials as construction materials. Laboratory trials carried out to investigate the properties of waste materials in different combinations; binary and ternary using the same water content. Specimens were evaluated on the basis of Unconfined Compressive Strength at 3,7 and 28 days curing. It was found that pastes containing waste gypsums, Basic oxygen Slag and Run of station ash achieved the highest unconfined compressive strengths (up to 20 MPa) and five mixes of these groups were selected for further tests such as viscosity, permeability, expansion, XRD and freeze and thaw. Data obtained from the ternary combinations were analyzed using two different methods, i.e. Response Surface method and Artificial Neural Network. Two prediction models were created using MINITAB and MATLAB software and the predicted results were compared. It was concluded that the Artificial Neural Network had fewer errors than the response surface model. The feasibility of using by-product materials in two field trials was also studied and the possibility of 100% cement replacement in low strength concrete used in subway backfilling (using 80%BOS-15% Plasterboard Gypsum-5%bypass dust) and light weight blocks (60% run of station ash-20%plaster board gypsum-20% bypass dust) was investigated. It was found that waste gypsum could be used in both trials and the basic oxygen slag could be used for subway backfilling because it improved the flow. However it was not a good idea to use the steel slag in light weight products because of its density. The thesis concludes that there are several potential applications for the use of the waste gypsums in combination with other waste materials in the construction industry but further work is required before it can be used commercially. However the sources and differing chemical contents of the by-product materials may have significant impact on the cementitious behaviour of by product materials.
|
Page generated in 0.0358 seconds