1 |
Nuclear import mechanism of Php4 under iron deprivation in fission yeast Schizosaccharomyces pombeKhan, Md Gulam Musawwir January 2015 (has links)
Php4 is a subunit of the CCAAT-binding protein complex that has a negative regulatory function during iron deprivation in the fission yeast Schizosaccharomyces pombe. Under low iron conditions, Php4 fosters the repression of genes encoding iron using proteins. In contrast, under iron-replete conditions, Php4 is inactivated at both transcriptional and post-transcriptional levels. Our group has already described that Php4 is a nucleo-cytoplasmic shuttling protein, which accumulates into the nucleus during iron deficiency. On the contrary, Php4 is exported from the nucleus to the cytoplasm in response to iron abundance. Php4 possesses a leucine-rich NES (93LLEQLEML100) that is necessary for its nuclear export by the exportin Crm1. Our current study aims at understanding the mechanism by which Php4 is imported in the nucleus during iron starvation. Through microscopic analyses using different mutant strains, we showed that the nuclear localization of Php4 is independent of the other subunits of the CCAAT-binding core complex namely Php2, Php3 and Php5. Deletion mapping analysis of Php4 identifies two putative nuclear localization sequences (NLSs) in Php4 (171KRIR174 and 234KSVKRVR240). Using chimeric proteins that consist of GFP fused to Php4, we engineered substitutions of the basic amino acid residues 171AAIA174 and 234ASVAAAA240 and analyzed the functionality of both NLSs. We observed that both monopartite NLSs play critical role for Php4 nuclear localization. We also observed that
mutant strains of cut15+, imp1+ or sal3+ exhibited defects in nuclear targeting of Php4, revealing that nuclear accumulation of Php4 is dependent on two karyopherin α (Imp1 and Cut15) and one karyopherin β (Sal3) receptors. Consistently, the Php4-mediated repression activity is abolished in the absence of two functional NLSs. Moreover, loss of Imp1, Cut15 or Sal3 resulted in increased expression of isa1+, which is a target gene of Php4. Co-immunoprecipitation assay (Co-IP) reveals physical interaction of Php4 with Imp1, Cut15 and Sal3 in vitro. Collectively, our results demonstrate that Php4 has two distinct NLS regions responsible for its nuclear localization. Furthermore, karyopherin α and β receptors play a role in the nuclear import of Php4. Because Php4 is essential for growth under low iron conditions, the presence of two NLSs would ensure the protein to reach its nuclear destination when cells undergo a transition from iron-sufficient to iron-limiting conditions.
|
2 |
Statistical Analysis Of cDNA Microarrays – A Systematic Approach to Identify MTF-1 Mediated Gene Expression Profile in Response to CadmiumYan, Yi 01 July 2003 (has links)
No description available.
|
3 |
Regulation of β-Casein Gene Expression by Octamer Transcription Factors and Utilization of β-Casein Gene Promoter to Produce Recombinant Human Proinsulin in the Transgenic MilkQian, Xi 01 January 2014 (has links)
β-Casein is a major milk protein, which is synthesized in mammary alveolar secretory epithelial cells (MECs) upon the stimulation of lactogenic hormones, mainly prolactin and glucocorticoids (HP). Previous studies revealed that the proximal promoter (-258 bp to +7 bp) of the β-casein gene is sufficient for induction of the promoter activity by HP. This proximal region contains the binding sites for the signal transducer and activator of transcription 5 (STAT5), glucocorticoid receptor (GR), and octamer transcription factors (Oct). STAT5 and GR are essential downstream mediators of prolactin and glucocorticoid signaling, respectively. This study investigated the functions of Oct-1 and Oct-2 in HP induction of β-casein gene expression. By transiently transfection experiment, we showed that individual overexpression of Oct-1 and Oct-2 further enhanced HP-induced β-casein promoter activity, respectively, while Oct-1 and Oct-2 knockdown significantly inhibited the HP-induced β-casein promoter activity, respectively. HP rapidly induced the binding of both Oct-1 and Oct-2 to the β-casein promoter, and this induction was not mediated by either increasing their expression or inducing their translocation to the nucleus. In MECs, Oct-2 was found to physically interact with Oct-1 regardless of HP treatment. However, HP induced physical interactions of Oct-1 or Oct-2 with both STAT5 and GR. Although the interaction between Oct-1 and Oct-2 did not synergistically stimulate HP-induced β-casein gene promoter activity, the synergistic effect was observed for the interactions of Oct-1 or Oct-2 with STAT5 and GR. The interactions of Oct-1 with STAT5 and GR enhanced or stabilized the binding of STAT5 and GR to the promoter. Abolishing the interaction between Oct-1 and STAT5 significantly reduced the hormonal induction of β-casein gene transcription. Thus, our study indicates that HP activate β-casein gene expression by inducing the physical interactions of Oct-1 and Oct-2 with STAT5 and GR in mouse MECs.
There is a high and increasing demand for insulin because of the rapid increase in diabetes incidence worldwide. However, the current manufacturing capacities can barely meet the increasing global demand for insulin, and the cost of insulin production keeps rising. The mammary glands of dairy animals have been regarded as ideal bioreactors for mass production of therapeutically important human proteins. We tested the feasibility of producing human proinsulin in the milk of transgenic mice. In this study, four lines of transgenic mice were generated to harbor the human insulin gene driven by the goat β-casein gene promoter. The recombinant human proinsulin was detected in the milk by Western blotting and enzyme-linked immunosorbent assay. The highest expression level of human proinsulin was as high as 8.1 μg/µl in milk of transgenic mice at mid-lactation. The expression of the transgene was only detected in the mammary gland during lactation. The transgene expression profile throughout lactation resembled the milk yield curve, with higher expression level at middle lactation and lower expression level at early and late lactation. The blood glucose and insulin levels and major milk compositions of transgenic mice were not changed. The mature insulin derived from the milk proinsulin retained biological activity. Thus, our study indicates that it is practical to produce high levels of human proinsulin in the milk of dairy animals, such as dairy cattle and goat.
|
4 |
Enhanced Liver X Receptor and Decreased Sterol Regulatory Element Binding Transcription Factor 2 Activities May Control Luteolysis of the Human Corpus LuteumXu, Yafei, Xu, Yafei January 2017 (has links)
The mechanisms causing luteolysis of the primate corpus luteum are unknown. There is an increase in expression of liver x receptor (LXR) target genes and reduced low density lipoprotein receptor (LDLR) during spontaneous luteolysis in primates. The LXRs belong to the nuclear receptor superfamily and increase cholesterol efflux by inducing transcription of their target genes. Uptake of cholesterol into primate luteal cells occurs primarily via LDL, and LDLR transcription is regulated by sterol regulatory element binding transcription factor 2 (SREBF2). Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) maintain luteal function by binding to the LH/CG receptor (LHCGR), which stimulates progesterone (P4) synthesis via protein kinase A (PKA). It has also been previously reported that there is an increase in 27-hydroxycholesterol (27OH) concentrations during spontaneous luteolysis in primates. Pregnenolone and P4 inhibit the enzyme activity of CYP27A1 (cytochrome p450, family 27, subfamily A, polypeptide 1), which converts cholesterol into 27OH, an oxysterol that is a natural LXR agonist and SREBF2 inhibitor. Therefore, the overall hypothesis is that LXR-induced cholesterol efflux and reduced LDL uptake via inhibition of SREBF2 activity mediate luteolysis of the human CL.
The objective of study 1 is to determine the effects of LXR activation and SREBF2 inhibition on P4 production, cholesterol metabolism and gene expression; and how hCG signaling via PKA regulates these effects in human luteinized granulosa cells. Basal and hCG-stimulated P4 secretion were significantly decreased by the combined actions of the LXR agonist T0901317 (T09) and the SREBF2 inhibitor fatostatin, which was associated with alterations in cholesterol metabolism leading to reduced intracellular cholesterol storage. Expression of LXR target genes in the presence of T09 was significantly reduced by hCG, while hCG significantly increased LDLR expression. These effects of hCG were reversed by a specific PKA inhibitor. Chronic hCG exposure had similar effects on LXR target gene and LDLR expression without an exogenous LXR agonist.
The objective of study 2 is to determine the effects of 27OH on P4 production and cholesterol metabolism; and to determine if inhibiting the conversion of cholesterol into pregnenolone increases LXR and decreases SREBF2 target gene expression via CYP27A1 in human luteinized granulosa cells. During luteolysis in primates and sheep, CYP27A1 expression significantly increased. 27OH significantly decreased hCG-stimulated P4 secretion and enhanced cholesterol efflux. Aminoglutethimide, which inhibits the conversion of cholesterol to pregnenolone, significantly increased ABCA1 and decreased LDLR. Knock-down of CYP27A1 resulted in a significant increase in P4 secretion, but did not prevent aminoglutethimide-induced effects on ABCA1 and LDLR. Knock-down of steroidogenic acute regulatory protein (STAR), which controls cholesterol transport into the mitochondria where CYP27A1 resides, significantly decreased LDLR transcription.
Collectively, the data from study 1 support the hypothesis that LXR-induced cholesterol efflux and reduced LDL uptake via inhibition of SREBF2 activity mediates luteolysis in primates, which is reversed by hCG. Data from study 2 indicates that 27OH produced via CYP27A1 may contribute to reductions in P4 synthesis during luteolysis, partially by serving as a dual LXR agonist and SREBF2 inhibitor, although other oxysterols are also likely involved.
|
Page generated in 0.1924 seconds