• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polyester synthases and polyester granule assembly : a thesis presented to Massey University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology

Peters, Verena January 2008 (has links)
PHAs are a class of biopolymers consisting of (R)-3-hydroxy-fatty acids and are produced by the majority of eubacteria and some archaeal bacteria as carbon storage material. In general, PHA is synthesised when a carbon source is available in excess while another essential nutrient is limited. The key enzyme of PHA biosynthesis, the PHA synthase, catalyses the polymerisation of the substrate (R)-3-hydroxyacyl-CoA to PHA accompanied by the release of coenzyme A. PHA is stored intracellularly as inclusions, the so-called PHA granules. When the external carbon source becomes exhausted, bacteria can metabolise these carbon inclusions by degradation of the polymer. PHA granules are water-insoluble, spherical inclusions of approximately 50-500 nm in diameter which consist of a hydrophobic polyester core surrounded by a phospholipid layer with embedded and attached proteins. One could consider isolated PHA granules as bio-beads due to their structure and size. In this study we tested if the PHA synthase can be used as an anchor molecule in order to display proteins of interest at the PHA granule surface. Furthermore, these modified PHA granules were analysed for their potential applicability as bio-beads in biotechnological procedures. The concept of using the PHA synthase as granule-anchoring molecule for display of proteins of interest was established by the functional display of the ß- galactosidase at PHA granules. This “proof of concept” was followed by the display of biotechnologically more interesting proteins. The IgG binding domain of protein A as well as streptavidin, which is known for its biotin binding ability, were fused to the PHA synthase, respectively, and therefore localised at the PHA granule surfaces during PHA granule assembly, resulting in functional bio-protein A -beads and bio-streptavidin-beads. Moreover, their applicability in biotechnological assays was demonstrated. Recently, we fused the green fluorescent protein (GFP) to the PHA synthase and demonstrated that the PHA granule assembly does not start randomly distributed in the cytoplasm but occurred localised at or near the cell poles. To further investigate if the localisation of the PHA granule formation process is due to polar positional information inherent to the PHA synthase, different mutated versions of the PHA synthase of Cupriavidus necator were created and analysed for a potential alteration in localisation. Furthermore, the phasin protein PhaP1 of C. necator was fused to HcRed, a far-red fluorescent protein, and localisation studies were accomplished when the fusion protein was expressed under different conditions in Escherichia coli.
2

Recombinant Escherichia coli producing an immobilised functional protein at the surface of bio-polyester beads : a novel application for a bio-bead : a thesis presented in partial fulfillment of the requirements of the degree of Master of Science in Microbiology at Massey University, Palmerston North, New Zealand

Atwood, Jane Adair January 2008 (has links)
Polyhydroxyalkanoates (PHAs) are polyesters, produced by many bacteria and some archaea. The most commonly characterised is polyhydroxybutyrate (PHB). Produced when nutrients are growth limiting and carbon available in excess, PHA serves as a carbon-energy storage material and forms generally spherical insoluble inclusions between 50-500nm in diameter in the cytoplasm. The key enzyme for PHA synthesis is the PHA synthase and this enzyme catalyses the polymerisation of (R)-3-hydroxy fatty acids into PHA. PHA synthase remains covalently attached to the growing polyester chain and is displayed on the surface of the PHA granule. Other proteins associated with PHA granules include depolymerases for mobilisation or degradation of granules, regulatory proteins and phasins, proteins that aid in PHA granule stability. PHA bio-beads displaying an IgG binding protein were produced and used to purify IgG from serum demonstrating that the PHA synthase can be engineered to display functional synthase fusion proteins at the PHA granule surface. Correctly folded eukaryotic proteins were also produced and displayed at the PHA granule surface as phasin fusion proteins. Multiple-functionality was also achievable by co-expression of various hybrid genes suggesting that this biotechnological bead production strategy might represent a versatile platform technology. The production of functional eukaryotic proteins at the PHA bead surface represents a novel in vivo matrix-assisted protein folding system. Protein engineering of PHA granule surface proteins provides a novel molecular tool for the display of antigens for FACS based analysis and offers promising possibilities in the development of future biotechnological production processes. Overall, the results obtained in this study strongly enhance the applied potential of these polyester beads in biotechnology and medicine.
3

Towards a better understanding of the polyhydroxyalkanoate synthase from Ralstonia eutropha : protein engineering and molecular biometrics : a thesis presented to Massey University in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Microbiology

Jahns, Anika Carolin January 2009 (has links)
Polyhydroxyalkanoates (PHAs) are polyesters composed of (R)-3-hydroxy-fatty acids. A variety of gram-positive as well as gram-negative bacteria and some archaea are able to produce these biopolymers as energy and carbon storage materials. In times of unbalanced growth, when carbon is available in excess but other nutrients are limited, PHA inclusions are formed. These granules are water-insoluble, stored intracellularly and can be maintained outside the cell as beads. The key enzyme for the formation of PHA inclusions is the PHA synthase PhaC, which catalyses the polymerization of (R)- 3-hydroxyacyl-CoA to PHA with the concomitant release of CoA. The PHA synthase from Ralstonia eutropha (currently Cupriavidus necator), which is covalently bound to the PHA granule surface, tolerates fusions to its N terminus without loss of activity. In this study it was investigated if it would also tolerate translational fusions to its C terminus. A specially designed linker was employed, aiming at maintaining the hydrophobic surroundings of the R. eutropha synthase C terminus to allow proper folding and activity. Two reporter proteins were tested as fusion partners, the maltose binding protein MalE and the green fluorescent protein GFP. As GFP is a hydrophobic protein itself, no additional linker between the PHA synthase and the reporter protein was necessary to produce PHA granules displaying the functional fusion protein on the surface. Principally, the PHA synthase PhaC tolerates translational fusions to its C terminus but the nature of the fusion partner influences the functionality. Recently, PHA granules have often been acknowledged as bio-beads. A one-step production allows the formation of functionalised beads without the need for further cross-linking to impart desired surface properties. PHA beads displaying a gold- or silica-binding peptide at the N terminus of PhaC were constructed and tested for their applicability. Additionally, these beads were able to bind IgG due to the ZZ domain of the IgG binding protein A, which was employed as a linker sequence. These functionalised beads can be used as molecular tools in bioimaging and biomedicine, combining organic core with inorganic-binding shell structures. In a different biomimetic approach, the display of ten lysine residues at the granule surface was achieved using the phasin protein PhaP as the anchoring matrix. Extensive work was performed in an attempt to also employ the synthase protein, but was unsuccessful. These positively charged bio-beads can be used for dispersion or crosslinking experiments as well as silica binding.

Page generated in 0.0296 seconds