• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical modelling of ferromagnetic embolisation hyperthermia in the treatment of liver cancer

Tsafnat, Naomi, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2005 (has links)
Both primary and secondary liver cancers are common and the majority of patients are not eligible for surgical resection or a liver transplant, which are considered the only hope of cure. Mortality rates are high and there is a need for alternative treatment options. New forms of local treatment work best on small tumours; large ones, however, remain difficult to treat. Hyperthermia involves heating tumours to 40??-44?? C. The aim is to heat the entire tumour without damaging the surrounding normal tissue. Treating deep seated tumours is technically challenging. Ferromagnetic embolisation hyperthermia (FEH) is a novel method of treating liver tumours. Magnetic microspheres are infused into the hepatic artery and lodge primarily in the tumour periphery. An applied alternating-current magnetic field causes the microspheres to heat. Animal experiments have shown that this is a promising technique. There is a need for modelling of FEH prior to commencement of clinical trials. Analytical and numerical models of tumour heating during FEH treatment are presented here. The models help predict the temperature distributions that are likely to arise during treatment and give insight into the factors affecting tumour and liver heating. The models incorporate temperature-dependent thermal properties and blood perfusion rates of the tissues and a heterogeneous clustering of microspheres in the tumour periphery. Simulations show that the poorly perfused tumours heat preferentially while the liver is effectively cooled by blood flow from the portal vein. A peripheral distribution of heat sources produces a more even temperature field throughout the tumour, compared to a heat source that is centred within the tumour core. Large tumours reach higher temperatures and have higher heating rates, supporting experimental findings. Using temperature-dependent, rather than constant, values for thermal conductivities and blood perfusion rates results in higher temperatures within the tumour. The uneven clustering of microspheres in the tumour periphery leads to a more heterogeneous temperature distribution in the core, but it has less of an effect on the wellperfused liver. The results show that FEH has the potential to effectively treat liver tumours and the technique merits further investigation.
2

Numerical modelling of ferromagnetic embolisation hyperthermia in the treatment of liver cancer

Tsafnat, Naomi, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2005 (has links)
Both primary and secondary liver cancers are common and the majority of patients are not eligible for surgical resection or a liver transplant, which are considered the only hope of cure. Mortality rates are high and there is a need for alternative treatment options. New forms of local treatment work best on small tumours; large ones, however, remain difficult to treat. Hyperthermia involves heating tumours to 40??-44?? C. The aim is to heat the entire tumour without damaging the surrounding normal tissue. Treating deep seated tumours is technically challenging. Ferromagnetic embolisation hyperthermia (FEH) is a novel method of treating liver tumours. Magnetic microspheres are infused into the hepatic artery and lodge primarily in the tumour periphery. An applied alternating-current magnetic field causes the microspheres to heat. Animal experiments have shown that this is a promising technique. There is a need for modelling of FEH prior to commencement of clinical trials. Analytical and numerical models of tumour heating during FEH treatment are presented here. The models help predict the temperature distributions that are likely to arise during treatment and give insight into the factors affecting tumour and liver heating. The models incorporate temperature-dependent thermal properties and blood perfusion rates of the tissues and a heterogeneous clustering of microspheres in the tumour periphery. Simulations show that the poorly perfused tumours heat preferentially while the liver is effectively cooled by blood flow from the portal vein. A peripheral distribution of heat sources produces a more even temperature field throughout the tumour, compared to a heat source that is centred within the tumour core. Large tumours reach higher temperatures and have higher heating rates, supporting experimental findings. Using temperature-dependent, rather than constant, values for thermal conductivities and blood perfusion rates results in higher temperatures within the tumour. The uneven clustering of microspheres in the tumour periphery leads to a more heterogeneous temperature distribution in the core, but it has less of an effect on the wellperfused liver. The results show that FEH has the potential to effectively treat liver tumours and the technique merits further investigation.

Page generated in 0.0594 seconds