• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biocarbon for fossil coal replacement / Biokol for ersättning av fossil kol

Phounglamcheik, Aekjuthon January 2018 (has links)
This research aims to provide a full view of knowledge in charcoal production for fossil coal replacement. Charcoal from biomass is a promising material to replace fossil coal, which is using as heating source or reactant in the industrial sector. Nowadays, charcoal with quality comparable to fossil coal is produced by high-temperature pyrolysis, but efficiency of the production is relatively low due to the trade-off between charcoal property and yield by pyrolysis temperature. Increasing charcoal yield by means of secondary char formation in pyrolysis of large wood particles is the primary method considering in this work. This research has explored increasing efficiency of charcoal production by bio-oil recycling and CO2 purging. These proposed techniques significantly increase concentration and extend residence time of volatiles inside particle of woodchip resulting extra charcoal. Characterization of charcoals implies negligible effect of these methods on charcoal properties such as elemental composition, heating value, morphological structure, and chemical structure. Besides, reactivity of charcoal slightly increased when these methods were applied. A numerical model of pyrolysis in a rotary kiln reactor has been developed to study the effect of design parameters and conditions in reactor scale. The simulation results showed fair prediction of temperature profiles and products distribution along the reactor length. Nonetheless, to deliver full knowledge in charcoal production, further works are planned to be done at the end of this doctoral research.

Page generated in 0.0704 seconds