• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lipid Modulation of Dynamics of a Seven-Helical Transmembrane Protein, Proteorhodopsin

Fernandes, Donald 28 August 2013 (has links)
Membrane proteins which comprise approximately a third of all proteins are classified for their roles in specific cell signalling, catalysis of metabolic reactions and transport of ions and molecules. One specific membrane protein, called proteorhodopsin (PR) belongs to the family of microbial rhodopsins and functions as a light-driven proton pump. Its lysine residue (Lys231) on helix G forms a Schiff base (C=N) with retinal, its chromophore which photo-isomerizes from the all-trans to the 13-cis form. Photo-isomerization initiates a photocycle, with distinct intermediates (K, M, N, and O). This study tries to emphasize the importance of interactions occurring between the membrane bilayer and PR by examining the kinetics of its photocycle and structure of the retinal chromophore using time-resolved spectroscopy in the visible range and static Raman spectroscopy. Some of the parameters of the membrane that were found to be important include protein to lipid ratio, bilayer thickness, bilayer fluidity and surface charge. The main conclusion is that PR has a very fast photocycle in negatively charged membranes, but a slower photocycle in positively charged ones, as well as in more rigid, thicker membranes. These slower cycles can originate from 1) suppression of conformational changes by the rigid bilayer or dehydration; 2) lack of available protons due to surface charge and 3) impeded isomerization.

Page generated in 0.0538 seconds