• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure-Property Relationships of Alicyclic Polyesters

Thompson, Tiffany Nikia 27 July 2023 (has links)
Polyesters are an important class of polymers in many applications ranging from common-use objects—such as packaging containers, clothing, and upholstery—to more advanced applications, such as lightweight strength materials in construction, electronics, and automotive parts. Poly(ethylene terephthalate) (PET), a semicrystalline aromatic polyester, is commercially the most common and widely used polyester. However, the inability to reuse polyesters such as PET over multiple reprocessing cycles in the same application remains a challenge due to the susceptibility of the polymer to thermal, hydrolytic, and oxidative degradation during melt processing. The various degradation modes result in a drop in molecular weight, loss of key physical properties, and release of volatile compounds. Furthermore, the vast issue of plastic accumulation and pollution in diverse ecosystems, landfills, and waste streams underscores the burgeoning need to create a closed loop—responsible materials management from the cradle to the grave—through these materials' continual reuse and recycling. Additionally, most feedstock monomers used in polyester synthesis primarily come from fossil fuels. Fossil fuel extraction processes release gases and particulate matter that adversely affect health, climate, and the environment, so finding alternative sources for polyester monomers is paramount. This dissertation addresses key polyester challenges by designing and synthesizing alicyclic polyesters. First, we synthesized a series of alicyclic polyesters using various ratios of two regioisomers of a previously unexplored alicyclic monomer, bicyclohexyldimethanol (BCD). We learned from this alicyclic polyester series that we could tailor properties such as morphology and elongation while raising the glass transition temperatures (Tg) and lower melting temperatures (Tm) of the polymers based on the regioisomer composition. Furthermore, the regioisomer that led to polymers with semicrystalline morphologies inspired us to apply it to PET as a copolymer, with the goal of increasing PET's stability under melt processing conditions by lowering Tm. Next, we synthesized a series of alicyclic copolyesters with different BCD compositions in the polymer. The results showed that the presence of the alicyclic rings of BCD lowers the melting temperature and enhances the stability of the polymer in the melt compared to PET. These results directed us toward synergistically combining the benefits of alicyclic monomers with sustainable biobased monomers to enhance polyester properties, thereby decoupling fossil fuels from polymer feedstock production. Accordingly, we explored naturally ubiquitous, structurally diverse, and chemically modifiable terpenes present in the resin exudate of conifers. Specifically, we derived alicyclic diacid and diol monomers from the terpene verbenone and used them to synthesize a series of biobased alicyclic polyesters. The polymer series exhibited a range of morphologies, Tg's, as well as enhanced stabilities. The semicrystalline composition exhibited higher Tg and slightly lower Tm than PET while possessing exceptional stability in the melt over PET. / Doctor of Philosophy / Polyesters are important materials widely used today. They are very large molecules composed of a basic chemical unit linked together in a repeating fashion to make a long chain. The nature of the links between the basic units is referred to as an ester link, and materials are described as polyester when the number of these links is large. The applications of polyesters range from common-use objects—such as packaging containers, clothing, and upholstery—to more advanced applications in construction, transportation, and defense—such as body armor, seat belts, and lightweight strength materials and coatings in construction. The properties of its basic structural unit enable the wide breadth of applications of polyesters. A significant challenge that faces polyesters is the inability to reuse the material in the same application multiple times. The material must be reprocessed by melting at high temperatures to be reused. This melting breaks down the polyester chain, weakening the material and rendering it unsuitable for continued use. The need to reuse polyesters is an important area of concern because of the growing problem of plastic accumulation and pollution in diverse ecosystems and landfills. If these materials are continually reused, they will not accumulate as environmental waste. Furthermore, the basic starting unit that makes up polyesters largely comes from fossil fuels. Fossil fuel extraction processes release gases and particulate matter that adversely affect health, climate, and the environment. The issues of polyester breakdown in the melt and fossil fuel use to make the polyester can be addressed in two ways. First, reinforcing the polyester through changes to the basic structural unit can prevent the breakdown of the material when melted, thereby enabling its reuse over multiple cycles. Second, reducing the dependence on fossil fuels to make the basic structural unit of the polyester can be accomplished by using more renewable biobased sources instead. This dissertation seeks to address these two challenges. In the first approach, we investigate the effect of using a special cyclic structure in the polyester make-up to reinforce its stability when melted and enable its reuse. Next, we use plant materials to derive these unique structures to reduce the dependence on fossil fuels and mitigate the environmental, climate, and health effects of fossil fuel use.

Page generated in 0.0982 seconds