• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microbial Restoration Ecology of Biological Soil Crusts

January 2019 (has links)
abstract: Biological soil crusts (biocrusts) are topsoil communities of organisms that contribute to soil fertility and erosion resistance in drylands. Anthropogenic disturbances can quickly damage these communities and their natural recovery can take decades. With the development of accelerated restoration strategies in mind, I studied physiological mechanisms controlling the establishment of cyanobacteria in biocrusts, since these photoautotrophs are not just the biocrust pioneer organisms, but also largely responsible for improving key soil attributes such as physical stability, nutrient content, water retention and albedo. I started by determining the cyanobacterial community composition of a variety of biocrust types from deserts in the Southwestern US. I then isolated a large number of cyanobacterial strains from these locations, pedigreed them based on their 16SrRNA gene sequences, and selective representatives that matched the most abundant cyanobacterial field populations. I then developed methodologies for large-scale growth of the selected isolates to produce location-specific and genetically autochthonous inoculum for restoration. I also developed and tested viable methodologies to physiologically harden this inoculum and improve its survival under harsh field conditions. My tests proved that in most cases good viability of the inoculum could be attained under field-like conditions. In parallel, I used molecular ecology approaches to show that the biocrust pioneer, Microcoleus vaginatus, shapes its surrounding heterotrophic microbiome, enriching for a compositionally-differentiated “cyanosphere” that concentrates the nitrogen-fixing function. I proposed that a mutualism based on carbon for nitrogen exchange between M. vaginatus and its cyanosphere creates a consortium that constitutes the true pioneer community enabling the colonization of nitrogen-poor, bare soils. Using the right mixture of photosynthetic and diazotrophic cultures will thus likely help in soil restoration. Additionally, using physiological assays and molecular meta-analyses, I demonstrated that the largest contributors to N2-fixation in late successional biocrusts (three genera of heterocystous cyanobacteria) partition their niche along temperature gradients, and that this can explain their geographic patterns of dominance within biocrusts worldwide. This finding can improve restoration strategies by incorporating climate-matched physiological types in inoculum formulations. In all, this dissertation resulted in the establishment of a comprehensive "cyanobacterial biocrust nursery", that includes a culture collection containing 101 strains, isolation and cultivation methods, inoculum design strategies as well as field conditioning protocols. It constitutes a new interdisciplinary application of microbiology in restoration ecology. / Dissertation/Thesis / Doctoral Dissertation Liberal Studies 2019
2

Rates of Lateral Expansion of Biological Soil Crusts

January 2017 (has links)
abstract: Biological soil crusts (biocrust) are photosynthetic communities of organisms forming in the top millimeters of unvegetated soil. Because soil crusts contribute several ecosystem services to the areas they inhabit, their loss under anthropogenic pressure has negative ecological consequences. There is a considerable interest in developing technologies for biocrust restoration such as biocrust nurseries to grow viable inoculum and the optimization of techniques for field deployment of this inoculum. For the latter, knowledge of the natural rates of biocrust dispersal is needed. Lateral dispersal can be based on self-propelled motility by component microbes, or on passive transport through propagule entrainment in runoff water or wind currents, all of which remain to be assessed. I focused my research on determining the capacity of biocrust for lateral self-propelled dispersal. Over the course of one year, I set up two greenhouse experiments where sterile soil substrates were inoculated with biocrusts and where the lateral advancement of biocrust and their cyanobacteria was monitored using time-course photography, discrete determination of soil chlorophyll a concentration, and microscopic observations. Appropriate uninoculated controls were also set up and monitored. These experiments confirm that cyanobacterial biological soil crusts are capable of laterally expanding when provided with presumably optimal watering regime similar to field conditions and moderate temperatures. The maximum temperatures of Sonoran Desert summer (up to 42 °C), exacerbated in the greenhouse setting (48 °C), caused a loss of biomass and the cessation of lateral dispersal, which resumed as temperature decreased. In 8 independent experiments, biocrust communities advanced laterally at an average rate of 2 cm per month, which is half the maximal rate possible based on the instantaneous speed of gliding motility of the cyanobacterium Microcoleus vaginatus. In a span of three months, populations of M. vaginatus, M. steenstrupii, and Scytonema spp. advanced 1 cm/month on average. The advancing crust front was found to be preferentially composed of hormogonia (differentiated, fast-gliding propagules of cyanobacteria). Having established the potential for laterally self-propelled community dispersal (without wind or runoff contributions) will help inform restoration efforts by proposing minimal inoculum size and optimal distance between inoculum patches. / Dissertation/Thesis / Masters Thesis Biology 2017
3

Biological soil crusts in forested ecosystems of southern Oregon : presence, abundance and distribution across climate gradients

Olarra, Jennifer A. 14 December 2012 (has links)
In arid and semi-arid deserts, soils are commonly covered with biological soil crusts. The study of arid biocrusts and their ecological function has become increasingly common in the literature over the last several decades. Interestingly, no mention is made of biological soil crusts in forested ecosystems, raising the question as to whether they exist in these areas and if they do, why they have yet to be recognized as such? Through the use a parallel logic, this study finds that biocrusts do indeed exist in forests, a novel relationship in forest ecology and seeks to determine if there exist ecophysical explanations for the abundance and distribution throughout the forest landscape. This study examined the effects of climate variables and substrate types on the abundance, distribution and overall cover of forest soil biocrust at fifty-two sites in southern Oregon, U.S.A. Sites were randomly selected within established buffer zones in the Siuslaw, Rogue-Sisikyou, Umpqua, and Fremont-Winema National Forests. The methods of Belnap et al 2001 were tested and then modified for application in forested ecosystems. Data were collected on the relative abundance and distribution of biocrust morphological groups across available substrates, community biocrust morphology, aspect, elevation and soil texture, pH and organic matter content. Site-specific data on average annual precipitation and minimum/maximum temperatures was collected using the PRISM Climate Model. This study found substrate colonization by specific morphological groups mixed across the study; though dominant communities were observed for each substrate present, substrate availability appears to be confounded by a number of variables (climate, stand age and structure and litter layer) not controlled for in this study. Biocrust community morphologies varied across sites, primarily influenced by the surface texture of the substrate and morphology of the individual. Relatively smooth surfaces (rock, bare soil) often resulted in smooth biocrust morphologies, whereas rough surfaces (dead wood, bare soil) tended to result in a rolling morphology. Litter layer directly influenced the relative proportion of substrates colonized, notably affecting dead wood and mineral soil biocrusts. Total biocrust cover increased as precipitation increased as did biocrust preference for dead wood substrates while mineral soil remained unchanged and rock surfaces were negatively represented. Aspect generally followed the anticipated distribution of total biocrust cover with the highest cover on N and NW aspects and lowest on the W aspect. Increases in elevation were negatively related to overall biocrust cover. Soil texture was not found to be directly related to overall biocrust cover, attributed in part to the highly adaptive nature of the biocrust community. Soil organic matter (SOM) influenced total biocrust cover with positive correlations between total cover and increasing SOM content. Soil pH increased as expected across the precipitation range (17 to 159 in/yr) of the transect. Total biocrust cover was found to trend with soil pH, but is believed to be attributed to the parallel relationship between precipitation and pH, rather than pH alone given the relative moderate pH range (4.39 to 6.54) of the study. The distribution and abundance of forest soil biocrusts is strongly influenced by precipitation. The confounding influence of precipitation to litter layer depth and organic matter content (through gradients of vegetative productivity) and soil pH further are concluded to influence substrate preference by morphological groups. Across the variables examined, similarities between the two communities (arid and forest) in response to climate and soil chemistry show parallel relations, justifying the formal establishment of biological soil crust community in forested regions. The differences between communities related to the presence of trees validate the establishment of forest soil biocrusts as distinct community in both form and ecological function with the forests. / Graduation date: 2013
4

Exploring Post-Fire Recovery of Biocrusts and Desert Ecosystem Services

Bahr, Jason R 01 December 2013 (has links) (PDF)
Biocrusts and the ecosystem services they provide are becoming more susceptible to fire as exotic annual grass invasions facilitate the spread of desert wildfires. Further, precipitation patterns across the western United States are predicted to change over the next century, and have the potential to dramatically influence fire regimes and the recovery of burned biocrusts. Despite these changes to desert fire and precipitation cycles, our understanding of post-fire biocrust recovery is limited, especially regarding the first two years after fire. To investigate biocrust recovery, we created burn manipulations (i.e., unburned and burned) and tracked crust form and function over two years in one cold and one hot desert ecosystem (UT, USA). We evaluated the entire bacterial community, but focused on Cyanobacteria species that confer soil stability and N fixation capabilities to biocrusts. Specifically, we quantified shifts in biocrust bacterial community composition using target metagenomics of 16S rDNA; monitored biocrust moss and lichen cover; measured N fixation potential; and assessed soil infiltration rates and soil stability. We found little evidence that biocrust form or function recovered from fire within two years. Based on pyrosequencing results, fire altered biocrust community composition in interspace and shrub biocrusts. Cyanobacteria species were almost completely eliminated by fire, constituting 9-21% of unburned plots and less than 0.01% of burned interspace and shrub biocrust communities. Based on cover estimates, no lichen or moss species survived the fire or recovered within two years. N fixation potentials decreased by at least six-fold in burned interspace biocrusts, representing a reduction in soil N inputs into already N-limited desert soils. Soil infiltration rates also drastically declined in burned biocrusts and remained depressed, but only remained depressed for one year. To investigate the interactions between biocrust recovery, fire, and precipitation, we nested precipitation treatments manipulating the amount of monthly rainfall (i.e., ambient, plus 30% and minus 30%) within burn treatments during the second year. Soil NH4+ was the only parameter to be affected by precipitation, and exhibited a positive relationship with precipitation magnitude at the end of one year. Our results demonstrate that fire is a strong destabilizer of the bacterial components of biocrust communities and that the ecosystem services provided by crusts recover at different rates, with N dynamics recovering more slowly than soil ecohydrology.

Page generated in 0.0364 seconds