• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

BIODEGRADABLE HYDROGELS AND NANOCOMPOSITE POLYMERS: SYNTHESIS AND CHARACTERIZATION FOR BIOMEDICAL APPLICATIONS

Hawkins, Ashley Marie 01 January 2012 (has links)
Hydrogels are popular materials for biological applications since they exhibit properties like that of natural soft tissue and have tunable properties. Biodegradable hydrogels provide an added advantage in that they degrade in an aqueous environment thereby avoiding the need for removal after the useful lifetime. In this work, we investigated poly(β-amino ester) (PBAE) biodegradable hydrogel systems. To begin, the factors affecting the macromer synthesis procedure were studied to optimize the reproducibility of the resulting hydrogels made and create new methods of tuning the properties. Hydrogel behavior was then tuned by altering the hydrophilic/hydrophobic balance of the chemicals used in the synthesis to develop systems with linear and two-phase degradation profiles. The goal of the research was to better understand methods of controlling hydrogel properties to develop systems for several biomedical applications. Several systems with a range of properties were synthesized, and their in vitro behavior was characterized (degradation, mechanical properties, cellular response, etc.). From these studies, materials were chosen to serve as porogen materials and an outer matrix material to create a composite scaffold for tissue engineering. In most cases, a porous three dimensional scaffold is ideal for cellular growth and infiltration. In this work, a composite with a slow degrading outer matrix PBAE with fast degrading PBAE microparticles was created. First, a procedure for developing porogen particles of controlled size from a fast-degrading hydrogel material was developed. Porogen particles were then entrapped in the outer hydrogel matrix during polymerization. The resulting composite systems were degraded and the viability of these systems as tissue engineering scaffolds was studied. In a second area of work, two polymer systems, one PBAE hydrogel and one sol-gel material were altered through the addition of iron oxide nanoparticles to create materials with remote controlled properties. Iron oxide nanoparticles have the ability to heat in an alternating magnetic field due to the relaxation processes. The incorporation of these nanoscale heating sources into thermosensitive polymer systems allowed remote actuation of the physical properties. These materials would be ideal for use in applications where the system can be changed externally such as in remote controlled drug delivery.
2

Growth Plate Regeneration Using Polymer-Based Scaffolds Releasing Growth Factor

Clark, Amanda 01 January 2013 (has links)
Currently growth plate fractures account for nearly 18.5% of fractures in children and can lead to stunted bone growth or angular deformation. If the body is unable to heal itself a bony bar forms, preventing normal bone growth. Clinical treatment involves removing the bony bar and replacing it with a filler substance, which causes poor results 60% of the time. Using primarily poly(lactic-co-glycolic acid) (PLGA) as the scaffold material, the goal was to develop an implant that would support to the implant site, allow for cell ingrowth, and degrade away over time. Porous scaffolds were fabricated from PLGA microspheres using the salt leaching method. The first part of this work investigated the effect of sintering the microspheres by studying the mechanical properties, degradation and morphology and their potential applications for hard and soft tissue implants. Growth factor or drugs can be encapsulated into PLGA microspheres, which was the second part of this work. Encapsulated insulin-like growth factor I (IGF-I) was able to withstand the scaffold fabrication process without compromising it’s bioactivity and promoted cell proliferation. The next part of this work experimented with the addition of a hydrogel porogen. Porogen particles were made using a quick degrading poly(beta-amino ester) (PBAE) hydrogel and loaded with ketoprofen. The addition of the porogen creates a dual drug-releasing scaffold with a localized delivery system. The final step of this work involved animal studies to determine the effectiveness of the scaffolds in growth plate regeneration and how they compare to the current clinical treatment option. Gross observation, microCT analysis, angular measurement of bone growth and histological methods were employed to evaluate the scaffolds. The goal was to develop a versatile scaffold that could be used for a wide range of tissue engineering applications. The mechanical properties, degradation profiles and drug delivery capabilities can be all tailored to meet the specific needs of an implant site. One specific application was regenerating the native growth plate that can also encourage the endogenous mesenchymal stem cells to follow the desire linage. By regenerating the native growth plate, angular deformation and stunted limb growth were greatly reduced.
3

Additives to Control Mechanical Properties and Drug Delivery of Injectable Polymeric Scaffolds

Fisher, Paul 01 January 2014 (has links)
In situ forming implants (ISIs) are popular due to their ease of use and local drug delivery potential, but they suffer from high initial drug burst, and release behavior is tied closely to solvent exchange and polymer properties. Additionally, such systems are traditionally viewed purely as drug delivery devices rather than potential scaffold materials due to their poor mechanical properties and minimal porosity. The aim of this research was to develop an injectable ISI with drug release, mechanical, and microstructural properties controlled by micro- and nanoparticle additives. First, an injectable ISI was developed with appropriate drug release kinetics for orthopedic applications. Poly(β-amino ester) (PBAE) microparticles were loaded with simvastatin or clodronate, and their loading efficiency and drug retention after washing was quantified. Drug-loaded PBAE microparticles and hydroxyapatite (HA) microparticles were added to a poly(lactic-co-glycolic acid) (PLGA)–based ISI. By loading simvastatin into PBAE microparticles, release was extended from 10 days to 30 days, and burst was reduced from 81% to 39%. Clodronate burst was reduced after addition of HA, but was unaffected by PBAE loading. Scaffold mass and porosity fluctuated as the scaffolds swelled and then degraded over 40 days. Next, the mechanical properties of these composite ISIs were quantified. Both micro- and nanoparticulate HA as well as PBAE microparticle content were varied. Increasing HA content generally improved compressive strength and modulus, with a plateau occurring at 30% nano-HA. Injectability remained clinically acceptable for up to 10% w/w PBAE microparticles. Ex vivo injections into trabecular bone improved both strength and modulus. Lastly, HA-free ISIs were investigated for drug delivery into the gingiva to treat periodontitis. Doxycycline and simvastatin were co-delivered, with delivery of doxycycline over 1 week accompanied by simvastatin release over 30 days. PBAE-containing ISIs exhibited higher initial and progressive porosity and accessible volume than PBAE-free ISIs over the course of degradation. Additionally, PBAE-containing ISIs provided superior tissue retention within a simulated periodontal pocket. The ISIs investigated here have a wide range of potential applications due to their flexible material and drug release properties, which can be controlled by both the chemistry and concentration of various particulate additives.

Page generated in 0.0906 seconds