• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 301
  • 282
  • 92
  • 25
  • 15
  • 13
  • 13
  • 11
  • 11
  • 11
  • 10
  • 6
  • 3
  • 3
  • 3
  • Tagged with
  • 850
  • 214
  • 81
  • 77
  • 76
  • 64
  • 58
  • 57
  • 57
  • 56
  • 53
  • 49
  • 47
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Evolution and phenotypic diversification in serratia marcescens biofilms.

Koh, Kai-Shyang, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2007 (has links)
The release of cells from a biofilm to the surrounding environment is poorly understood and the importance of this stage of biofilm development has only recently been realized. A key part of this process is the generation of phenotypic variants in the biofilm dispersal population. This thesis reports on the characterization of biofilm development of Serratia marcescens MG1, the analysis of the biofilm dispersal population, and the identification of the conditions that trigger phenotypic diversification. Furthermore, it provides an insight into the molecular understanding of how phenotypic variation is being generated, and demonstrates the clinical and environmental implications of phenotypic diversification during bacterial pathogenesis and bacterial persistence. Characterization of the microcolony biofilm development of S. marcescens revealed that the S. marcescens biofilm develops through a process involving microcolony formation, hollowing of mature microcolonies, and a sudden biofilm expansion within a very short period (&lt 24h) resulting in an increase in biofilm biomass with a radiation of biofilm structures at days 3 to 4. The biofilm expansion phase consistently correlated to an increase in the number of dispersal variant morphotypes. Studies of variant induction in planktonic cultures and biofilm flow cells demonstrated that phenotypic diversification in S. marcescens is not only a biofilm-specific phenomenon, but also involves biofilm-specific morphotypes. These morphological variants can only be isolated from the microcolony biofilm morphotype and not from the filamentous biofilms, leading to the hypothesis that there is a strong diversifying selection that is specific to the microcolony biofilms. To further explore how these variants were generated, molecular analyses revealed that exopolysaccharides and lipopolysaccharides are important moieties that are involved in phenotypic variation in S. marcescens biofilms. The etk gene, encoding a tyrosine protein kinase within the exopolysaccharide biosynthesis operon, was found to contain single nucleotide polymorphisms (SNPs) that were present in the 'sticky' variants but not in the 'non-sticky' wild-type or the 'non sticky' small colony variants. Furthermore, infrequent-restriction-site PCR (IRS-PCR), BIOLOG metabolic profiling, and gene sequence analyses, suggest that phenotypic diversification in S. marcescens is likely to involve mutational hotspots in specific genes. The biofilm-derived morphotypic variants differed extensively in cell ultrastructure properties, and exhibited specialized colonization and virulence traits, such as attachment, biofilm formation, swimming and swarming motilities, protease production, and hemolysin production. It was also demonstrated that phenotypic diversification contributed to a varying degree of resistance to protozoan predation, and bacterial pathogenecity in Caenorhabditis elegans, highlighting the complexity of the dispersal populations from S. marcescens biofilms. Furthermore, mixed-culture experiments involving multiple variant isolates (with or without the parental wild-type) showed that the persistence and virulence potential of S. marcescens can be synergistically enhanced in the Acanthamoeba castellanii grazing model and in the C. elegans infection model, respectively. This indicates that the different bacterial morphotypes work in concert to provide S. marcescens with enhanced protection against environmental perturbations and a competitive edge during the infection process. It was proposed that phenotypic diversification is not only an integral part of S. marcescens biofilm life-cycle, but also represents an important strategy for bacteria to greatly enhance its survival and persistence in different environments, ranging from aquatic and soil ecosystems, to those of the infected hosts.
162

Bacterial attachment to micro- and nano- structured surfaces

Mitik-Dineva, Natasa January 2009 (has links)
The ongoing interest in bacterial interactions with various surfaces, followed by attachment and subsequent biofilm formation, has been driven by the importance of bacterial activities in number of medical, industrial and technological applications. However, bacterial adhesion to surfaces has not been completely understood due to the complexity of parameters involved. The study presented herein investigates the attachment pattern of nine medically and environmentally significant bacteria belonging to different taxonomic lineages: Firmicutes - Bacillus, Gammaproteobacteria, Alphaproteobacteria and Bacteriodetes. Physicochemical assessment techniques such as contact angle and surface charge measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), confocal microscopy (CLSM), as well as X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectroscopy (XRF) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) analysis were all employed in order to attain better insight into the factors that influence bacterial interactions with surfaces. Bacterial surface characteristics such as surface wettability and charge in addition to substratum surface wettability, tension, charge and chemistry were also considered. However due to the recent interest in designing micro-textured surfaces with antibacterial and/or antifouling effects the prime was given to the influence of micro- and nano-meter scale surface textures on bacterial adhesion. The interactions between selected bacteria and glass, polymer and optical fibre surfaces were studied. Carefully designed methods for surface modification allowed alteration of the topography of glass, polymer and optical fibre surfaces while maintaining other surface parameters near constant. This allowed isolated assessment of only the effects of surface roughness on bacterial adhesion. Obtained results indicated consistent cellular inclination towards the smoother surfaces for all of the tested species. Enhanced bacterial presence on the smoother surfaces was also accompanied by changes in the bacterial metabolic activity as indicated by the elevated levels of secreted extracellular polymeric materials (EPS) and modifications in the cells morphology. The results indicate that nano-scale surface roughness exert greater influence on bacterial adhesion than previously believed and should therefore be considered as a parameter of primary interest alongside other wellrecognized factors that control initial bacterial attachment.
163

Biofilm growth and colony variance in Streptococcus pneumoniae serotypes

Allegrucci, Magee. January 2007 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Biological Sciences, 2007. / Includes bibliographical references.
164

Using optical methods to monitor and administer photodynamic therapy to oral bacteria /

Fu, Yongji. January 2008 (has links)
Thesis (Ph.D.) OGI School of Science & Engineering at OHSU, March 2008. / Includes bibliographical references (leaves 105 - 114).
165

An Investigation of Biofilms and Manganese Oxide Formation in Pinal Creek, Arizona.

Gilbert, Hanna Loraine January 2003 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona, 2003. / Includes bibliographical references (leaves 285-292).
166

Multistage and multiple biomass approaches to efficient biological nitrogen removal using biofilm cultures /

Hughes, Leonie. January 2008 (has links)
Thesis (Ph.D)--Murdoch University, 2008. / Thesis submitted to the Faculty of Sustainability, Environmental and Life Sciences. Includes bibliographical references (p. 213-220).
167

The two-component signal transduction systems of Pseudomonas aeruginosa

Richard, Jessica. January 2008 (has links) (PDF)
Professional paper (MS)--Montana State University--Bozeman, 2008. / Typescript. Chairperson, Graduate Committee: Michael Franklin. Includes bibliographical references (leaves 37-46).
168

Regulation of biofilm formation and outer membrane protein expression in Vibrio cholerae by iron

Craig, Stephanie Anne. January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
169

Potential of biofilms to harbor largemouth bass virus (LMBV) /

Nath, Shubhankar. January 1900 (has links)
Thesis (M.S.)--Texas State University--San Marcos, 2009. / Vita. Includes bibliographical references (leaves 34-37). Also available on microfilm.
170

Biofilm formation by Moraxella catarrhalis

Pearson, Melanie Michelle. January 2004 (has links) (PDF)
Thesis (Ph. D.) -- University of Texas Southwestern Medical Center at Dallas, 2004. / Vita. Bibliography: 214-244.

Page generated in 0.0373 seconds