• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Solubilization with Thermal Hydrolysis Process of Municipal Biosolids

Lu, Hung-Wei 18 September 2014 (has links)
The increased demand for advanced sludge stabilization in wastewater treatment facilities over the past decade has led to the implementation of various pretreatment techniques prior to anaerobic digestion. In an attempt to reduce sludge volumes and improve sludge conditioning properties, the use of thermal hydrolysis process before anaerobic digestion has been adopted with an increase in solids destruction, COD removal, and methane gas. In this study, the evaluation of thermal hydrolysis process as a viable pretreatment strategy to anaerobic digestion has been conducted in order to assess its capacity for solids solubilization. Solubilization experiments were conducted at temperatures ranging from 130 to 170℃ and reaction times between 10 and 60 min. Anaerobic biogas production by thermally pre-treated sludge was carried out through a mesophilic anaerobic digester. The results showed that solids solubilization increased with increases in temperature and time, while temperatures above 160℃ for 30 min strongly affected the sludge characteristics. Ammonia production via deamination by thermal hydrolysis was less significant than protein solubilization at a temperature of 170℃. Both protein and carbohydrate solubilization were more dependent on temperature than reaction time. The enhancement of the biogas production was achieved with increases in temperature as pretreatment of 170℃ yielded 20% more biogas than at 130℃. However, it seems the enhancement was linked to the initial biodegradability of the sludge. / Master of Science

Page generated in 0.1271 seconds