• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 670
  • 89
  • 43
  • 43
  • 43
  • 43
  • 43
  • 43
  • 42
  • 40
  • 10
  • 9
  • 4
  • 2
  • 2
  • Tagged with
  • 1081
  • 305
  • 235
  • 228
  • 218
  • 198
  • 142
  • 130
  • 123
  • 106
  • 85
  • 84
  • 81
  • 81
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Sedimentary phosphorus cycling in Tomales Bay, California

Vink, Suzanna January 1994 (has links)
Thesis (Ph.D.)--University of Hawaii at Manoa, 1994. / Includes bibliographical references (leaves 161-169). / Microfiche. / xii, 169 leaves, bound ill., maps 29 cm
472

Microbial and Geochemical aspects of Selenium cycling in an Estuarine system: Lake Macquarie N.S.W.

Carroll, Brett Ian January 1999 (has links)
ABSTRACT This work examined the role of micro-organisms in the biogeochemical cycling of selenium within the benthic ecosystem of Lake Macquarie, a coastal lake in New South Wales with a history of anthropogenic heavy metal contamination. Certain micro-organisms possess the ability to oxidise or reduce selenium (Fleming and Alexander, 1973; Doran and Alexander, 1977), and microbial volatilisation of selenium from contaminated sediments and soils utilising naturally-occurring microflora has been shown in overseas research (Thompson-Eagle and Frankenberger, 1992) to be a potentially effective remediation strategy. In examining the impact of micro-organisms upon the oxidation state of selenium in Lake Macquarie sediments, this work also investigated and characterised selenium (and heavy metal) concentrations, speciation and geochemical phase associations (an indicator of potential bioavailability) in the sediments. Seven distinct bacterial species indigenous to Lake Macquarie were identified in this work with the ability to reduce selenium as selenite to elemental selenium, and selenium as selenate to organic forms of selenium, including volatile methylated selenium compounds. Metabolic parameters calculated for these organisms compared favourably with those reported in the literature by other researchers. Mixed populations of sediment micro-organisms were also isolated and studied in this work for their selenite and selenate reduction abilities. Total reduction of added selenite at levels up to 100 mg/L was recorded for a number of the organisms studied in this work. A maximum specific uptake rate for selenite of 3040 mgSe(IV).(gcells)-1.(h)-1 for one isolate (Shewanella putrefaciens) was determined, exceeding rates reported in the literature by other authors. Use of the indigenous micro-organisms from Lake Macquarie for the bioremediation of selenium containing waste streams was also examined in this work and selenium reduction in an immobilised cell reactor was demonstrated with such organisms. Concentrations, speciation, sediment core profiles and geochemical phase associations for selenium were determined for sediment samples collected at a variety of sites throughout Lake Macquarie and from Wyee Creek, a selenium-impacted fluvial input to the lake. The maximum concentration of selenium obtained in this work for the lake proper was 4.04 mg/kg, considerably lower than values reported over a decade ago (Batley, 1987) but consistent with reported reductions of selenium input into the lake from the lead-zinc smelter. Selective extraction methodology (Tessier et al. and BCR methods) studied geochemical phase association of selenium in Lake Macquarie sediments and found up to 44% of selenium was in bioavailable forms. Of interest and environmental concern was levels of selenium found in sediments of Wyee Creek, which previously received overflows from the ash dam associated with the Vales Point Power Station. Sediment selenium levels of up to 300 mg/kg were determined for this creek. These were an order of magnitude or more greater than those recorded for the lake itself and are of concern as to the potential impact on benthic organisms and those animals, including humans, who consume them. While this work can only provide a 'snapshot' of conditions within Lake Macquarie at the time of the sampling events recorded herein, it does make several important contributions to the understanding of selenium biogeochemistry in Lake Macquarie. These include: presentation of the hypothesis that selenium levels in surficial sediments being deposited in the north of the lake have decreased in recent years as a result of selenium reduction measures undertaken by the lead-zinc smelter; determination that up to 44% of selenium in surficial sediments from the lake is associated with sediment phases in which selenium has the potential to become remobilized and hence possibly bioavailable; and documentation of selenium concentrations in Wyee Creek, identifying the area as having selenium concentrations an order of magnitude or more greater than the lake itself. Concerning the role played by microorganisms in the biogeochemical cycling of selenium in Lake Macquarie, this work has: identified individual isolated and mixed cultures of bacteria that can reduce selenium as selenite to lower oxidation states; identified individual isolated and mixed cultures of bacteria that can reduce selenium as selenate to lower oxidation states; identified volatile methylated selenium compounds in the headspace gases of microorganisms reducing selenate; determined Minimum Inhibitory Concentrations for selenate and selenite for organisms isolated from Lake Macquarie; identified casein hydrolysate as a preferred carbon source for selenium reducing microorganisms from Lake Macquarie; and demonstrated that bioremediation of selenium contaminated waste streams using indigenous organisms from Lake Macquarie is feasible on the laboratory scale. Further research areas suggested by this work include: additional investigations of elevated selenium levels in Wyee Creek sediments; determination of the role of microbes in in-situ selenium reduction; and optimisation of selenium biotreatment/bioremediation of selenium-containing waste streams and sediments. In summary, this work, in rejecting the null hypothesis that the oxidation states of selenium in sediments from Lake Macquarie, NSW, are independent of microbial activity and accepting the alternate hypothesis that these oxidation states are not independent of microbial activity, contributes to the understanding of the role of microorganisms in the biogeochemical cycling of selenium, having applicability to both the specific ecosystem of Lake Macquarie, NSW, and also to selenium cycling in the environment in general. In addition, this work has identified selenium contamination in Wyee Creek, one of the fluvial inputs to Lake Macquarie, which was previously been undocumented in the literature and which may pose significant potential risk to humans and the ecosystem due to sediment selenium levels one or more orders of magnitude higher than those recorded in the lake itself. Finally, this work has also identified a number of microorganisms indigenous to Lake Macquarie with the ability to reduce selenium from toxic, mobile forms to less toxic, immobile or volatile forms, and these organisms have been shown to have the potential for use in treatment of selenium contaminated waste streams and also in the bioremediation of selenium-contaminated sediments.
473

Carbon flux in the temperate zooxanthellate sea anemone Anthopleura aureoradiata : a thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Master of Science in Marine Biology /

Gibbons, Christopher Lynton. January 2008 (has links)
Thesis (M.Sc.)--Victoria University of Wellington, 2008. / Includes bibliographical references.
474

The spatial, temporal and biogeochemical dynamics of submarine groundwater discharge in a semi-enclosed embayment /

Loveless, Alicia Maree. January 2006 (has links)
Thesis (Ph.D.)--University of Western Australia, 2007.
475

Biogeochemical constraints on the growth and nutrition of the seagrass Halophila ovalis in the Swan River Estuary /

Kilminster, Kieryn Lee. January 2006 (has links)
Thesis (Ph.D.)--University of Western Australia, 2006.
476

Carbon and nitrogen cycling in the Peruvian Andean Amazon

Townsend-Small, Amy, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
477

Impacts of forest-to-agriculture conversion on aboveground and soil carbon and nitrogen stocks along a bioclimatic gradient in Costa Rica /

Jobse, Judith C. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 136-142). Also available on the World Wide Web.
478

Assessment of Pacific Ocean carbon production and export using measurements of dissolved oxygen isotopes and oxygen/argon gas ratios /

Juranek, Lauren Wray. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (p. 127-137).
479

Aboveground biomass and ecosystem carbon pools in tropical secondary forests growing in six life zones of Costa Rica /

Cifuentes-Jara, Miguel. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2008. / Printout. Includes bibliographical references. Also available on the World Wide Web.
480

Carbon cycling dynamics during succession in sagebrush steppe

Cleary, Meagan B. January 2007 (has links)
Thesis (Ph. D.)--University of Wyoming, 2007. / Title from PDF title page (viewed on July 15, 2008). Includes bibliographical references.

Page generated in 0.0833 seconds