• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biologiskt nedbrytbar polymer  som flockningskemikalie : En jämförande studie över stärkelsebaserad polymer och polyakrylamid vid Norrmejeriers biogasanläggning

Hort, Hort January 2014 (has links)
In this study an investigation was made on whether a petroleum based polyelectrolyte could be replaced by a biodegradable polymer. This was done to enable the use of sludge from the biogas plant of the dairy in Umeå, Sweden, as fertilizer. The properties and effectiveness of a starch based polyelectrolyte were compared to polyacrylamide in laboratory tests. Other biodegradable polyelectrolytes were also presented. The tests were made on sludge from the dairy. In tests with a waste water with a low dry substance content (<0,1 %) the dewatering effects were similar between polyacrylamide and the starch based polymer. Starch had a small effect on dewatering sludge with a higher dry substance content (4 %). Cellulose fibers in combination with starch increased the amount of dewatered sludge, but polyacrylamide was still the most effective polyelectrolyte. A starch based polymer could be an alternative to polyacrylamide, if cellulose fibers are added. Other biodegradable polyelectrolytes which could have sufficient dewatering effects are chitosan and tannins. There were methodical problems in this study with the accuracy of measuring dry substance content and a difference in dilution of sludge samples when adding chemicals. To proceed in the search for biodegradable alternatives to polyacrylamide at the biogas plant the first step is to develop reliable methods for evaluating the effects of different polyelectrolytes.   Key words: dewatering, sludge, polyelectrolyte, biodegradable

Page generated in 0.041 seconds