Spelling suggestions: "subject:"marqueurs d'exposition""
1 |
Biodisponibilité et effets transcriptomiques du cérium chez Chlamydomonas reinhardtiiMorel, Elise 01 1900 (has links)
Du fait de leurs propriétés spécifiques, les éléments de terres rares (ETRs) sont des métaux devenus indispensables au développement de notre société moderne. Avec leurs utilisations croissantes, des modifications importantes du cycle biogéochimique des ETRs sont attendues alors que peu est encore connu sur leur devenir et leurs effets une fois rejetés dans l’environnement.
Le cérium (Ce) a la particularité d’être utilisé sous forme de sels ou de nanoparticules dans différents produits d’utilisation courante (e.g. additifs de diesel, peintures). En raison de sa réactivité redox particulière, le Ce est naturellement peu soluble dans les eaux de surface et va donc principalement se retrouver dans les sédiments de ces écosystèmes aquatiques. Cependant les propriétés physicochimiques du Ce anthropique peuvent modifier le transport et le comportement de ce dernier. Par exemple, les nanoparticules manufacturées d’oxydes de cérium (Ce NMs) pourvues d’un enrobage peuvent présenter une stabilité colloïdale différente de celles naturellement formées. Les organismes pélagiques des milieux aquatiques, dont les micro-organismes photosynthétiques, d’intérêt dans ce projet, pourraient ainsi être exposés à de nouvelles formes de Ce et à différentes concentrations.
Comme il est difficile d'observer des réponses biologiques significatives pour des concentrations d'exposition représentatives de celles susceptibles d’être retrouvées dans l'environnement (< 1 µM), les impacts potentiels du Ce sur le phytoplancton dans des scénarios d'exposition réalistes sont encore mal élucidés. Des résultats contradictoires ont notamment été observés dans la littérature en ce qui concerne la biodisponibilité des Ce NMs pour les microalgues unicellulaires et la relation entre leurs propriétés de surface (i.e. rapport Ce (III)/Ce (IV), enrobage) et les réponses cellulaires. Des données quantitatives sont ainsi toujours nécessaires pour l'évaluation des risques potentiels du Ce pour l’Environnement.
Dans ce projet, Chlamydomonas reinhardtii a été sélectionnée comme organisme modèle pour représenter les microalgues présentent dans les eaux douces. Des sels solubles de Ce, Tm, Y et trois types de petites Ce NMs (<10 nm) avec différents enrobages (i.e. non enrobées, fonctionnalisées par du citrate ou enrobées de poly(acide acrylique) (PAA)) ont été injectés dans des milieux aqueux simplifiés (i.e. sans phosphates) à des concentrations représentatives de celles attendues dans des environnements anthropisés. La spectrométrie de masse à plasma à couplage inductif en mode simple particule (SP-ICP-MS) a constitué l’une des techniques analytiques de pointe déployées dans ce projet. Elle a permis de quantifier les formes dissoutes et nanoparticulaires du Ce présentent dans les milieux d’exposition des microalgues et de caractériser les petites Ce NMs à des concentrations similaires à celles utilisées pour exposer les microalgues. L’analyse de profilage du transcriptome entier (ARN-Seq) a constitué une autre technique émergente en nano(éco)toxicologie. Elle a permis d’identifier des gènes et voies métaboliques mobilisés chez les populations algales de C. reinhardtii pour s’adapter à leurs expositions soit à des Ce NMs soit à des sels d’ETRs pour des concentrations d’exposition de 0,5 µM Ce, Tm ou Y en milieux contrôlés à pH 7.0.
Les microalgues C. reinhardtii ont d’abord été exposées au sel de Ce soluble et aux Ce NMs afin d’en comparer la biodisponibilité et les réponses biologiques sous-létales associées. Les résultats ont révélé que les Ce NMs sont biodisponibles pour C. reinhardtii mais et produisent un stress modéré auquel ces dernières semblent s’acclimater à court terme à des concentrations pertinentes pour l'environnement. Des effets transcriptomiques distincts entre Ce ionique et Ce NMs ont également été observés. L’hypothèse selon laquelle seuls les produits de dissolution des Ce NMs sont biodisponibles pour C. reinhardtii a donc pu être infirmée. En effet, les microalgues exposées aux Ce NMs testées ont spécifiquement modulé l’expression des gènes impliqués dans le système ubiquitine-protéasome et la structure des flagelles. Malgré ces effets communs entres les Ce NMs, leur biodisponibilité est principalement influencée par leurs enrobages, et non par le rapport de Ce(III)/Ce(IV) des atomes de surface des NMs. L’enrobage de citrate a d’ailleurs particulièrement atténué les effets transcriptomiques des Ce NMs sur les microalgues, probablement en raison des effets bénéfiques de la désorption du citrate à leur surface.
Les profils de temps-réponses (0 à 360 min.) et concentrations-réponses (0 à 3 µM) de gènes spécifiques des Ce NMs ou du Ce ionique ont par la suite été analysés pour vérifier leur potentielle utilisation en tant que biomarqueurs d’exposition des micoalgues au Ce ionique. En raison de leur spécificité élevée et de la linéarité relative de l'expression des biomarqueurs en fonction du temps sur une plage de concentrations pertinentes pour l'environnement (0,03 à 3 µM), quatre biomarqueurs (Cre17.g737300, GTR12, MMP6 et HSP22E) ont été identifiés comme étant spécifiques au Ce ionique pour C. reinhardtii. Une variabilité beaucoup plus grande des niveaux d'ARNm a été observée lorsque le pH du milieu variait (5,0 à 8,0). Ce résultat reflète probablement la complexité de la spéciation du Ce résultant de la formation d'espèces métastables même dans des milieux aqueux simples.
Les effets transcriptomiques de sels de Ce, Tm, Y solubles appliqués individuellement ou sous forme de mixture équimolaire ont été caractérisés par ARN-Seq chez C. reinhardtii afin de comparer la biodisponibilité du Ce à celle des autres ETRs pour les microalgues, sachant le comportement atypique du Ce en solution. Les microalgues exposées au Ce ont spécifiquement modulé l’expression de gènes impliqués dans le métabolisme du glutamate et au repliement des protéines. Cependant des interactions compétitives ont été identifiées entre les ETRs lorsqu’appliqués en tant que mixture. Ces résultats suggèrent que l'approche des agences gouvernementales pour dériver des données de toxicité à partir d’un seul métal simple serait largement conservatrice pour les métaux de terres rares.
Par ce projet, l’analyse des réponses transcriptomiques par ARN-Seq chez C. reinhardtii a permis de caractériser la biodisponibilité du Ce et d’identifier des biomarqueurs transcriptomiques d’exposition chez les microalgues dans différents contextes ; en présence de Ce NMs ou d’autres ETRs. L’intégration de tels biomarqueurs pour le développement d’un bio-essai in situ nécessite cependant de plus amples investigations. / Due to their specific properties, rare earth elements (REEs) are metals that have become essential to the development of our modern society. With their increasing uses, significant modifications to the biogeochemical cycle of REEs are expected while little is known about their fate and their effects once released into the environment.
Cerium (Ce) has the particularity of being used in the form of salts or nanoparticles in various commonly used products (e.g. diesel additives, paints). Due to its particular redox reactivity, Ce is naturally poorly soluble in surface water and will therefore mainly be found in the sediments of these aquatic ecosystems. However, the physicochemical properties of the anthropogenic Ce can modify its transport and behavior. For example, engineered cerium oxide nanoparticles (Ce ENPs) are generally coated and thus may exhibit different colloidal stability from those naturally formed. Pelagic organisms in aquatic environments, including photosynthetic microorganisms, of interest in this project, could thus be exposed to new forms of Ce and at different concentrations.
As it is difficult to observe significant biological responses for environmentally relevant exposure concentrations (<1 µM Ce), the potential impacts of Ce on phytoplankton in realistic exposure scenarios are still poorly understood. Contradictory results have notably been reported with regard to the bioavailability of Ce ENPs for unicellular microalgae and the relationship between their surface properties (i.e. Ce(III)/Ce(IV) ratio, coating) and cellular responses. Quantitative data are thus always necessary for the evaluation of the potential risks of Ce for the Environment.
In this project, Chlamydomonas reinhardtii was selected as a model organism to represent microalgae in freshwater. Soluble salts of Ce, Tm, Y and three types of small Ce ENPs (<10 nm) with different coatings (i.e. uncoated, functionalized with citrate or coated with poly (acrylic acid) (PAA)) were injected into simplified aqueous media (i.e. without phosphates) at concentrations representative of those expected in contaminated environments. One of the advanced analytical techniques deployed in this project was inductively coupled plasma mass spectrometry in single particle mode (SP-ICP-MS). It has made it possible to quantify the dissolved and nanoparticulate forms of Ce present in microalgae exposure media and to haracterize small Ce NMs at concentrations similar to those used to expose microalgae. Another emerging nano(eco)toxicology analysis used in this project is the whole transcriptome sequencing (RNA-Seq). RNA-Seq has permitted to identify genes and metabolic pathways that were regulated by C. reinhardtii cells when exposed to either Ce ENPs or to salts of REEs for exposure concentrations of 0.5 μM Ce, Tm or Y in controlled environments at pH 7.0.
C. reinhardtii cells were first exposed to soluble Ce salt and Ce ENPs in order to compare relative bioavailabilities of these anthropogenic Ce forms and their associated sub-lethal biological responses. The results revealed that Ce ENPs are bioavailable to C. reinhardtii but produce a manageable toward microalgae cells who seem to acclimatize for short-term exposures at environmentally relevant concentrations. Separate transcriptomic effects of Ce ionic and Ce ENPs have also been observed. The hypothesis that only the dissolution products of Ce ENPs are bioavailable for C. reinhardtii could therefore be rejected. Indeed, the microalgae exposed to the tested ENPs specifically modulated the expression of the genes involved in the ubiquitin-proteasome system and the structure of flagella. Despite these common effects between Ce ENPs, their bioavailability was mainly influenced by their coatings, and not by the Ce(III)/Ce(IV) ratio of surface atoms of ENPs. The coating of citrate has attenuated the transcriptomic effects of Ce ENPs on microalgae, probably due to the beneficial effects of the desorption of citrate on their surface.
The time-response (0 to 360 min.) and concentration-response (0 to 3 µM) profiles of specific Ce ENPs or ionic Ce genes were then analyzed to verify their potential use as biomarkers of exposure to ionic Ce. Due to their high specificity and the relative linearity of the expression of biomarkers as a function of both time and concentration, over a range of concentrations relevant to the environment (0,03 à 3 µM), four biomarkers (Cre17.g737300, GTR12, MMP6 and HSP22E) have been identified as being specific to the ionic Ce for C. reinhardtii. Much greater variability in mRNA levels was observed when the pH of the medium varied (5.0 to 8.0). This result probably reflects the complexity of the speciation of Ce resulting from the formation of metastable species even in simple aqueous media.
The transcriptomic effects of soluble Ce, Tm, Y salts applied individually or in the form of an equimolar mixture were characterized by RNA-Seq in order to determine the relative bioavailability of Ce compare to the one of other REEs for microalgae, due to Ce atypical behavior in solution. The microalgae exposed to Ce specifically modulated the expression of genes involved in glutamate metabolism and protein folding. However, competitive interactions have been identified between the REEs when applied as a mixture. These results suggest that the approach of government agencies to derive toxicity data from a single metal would be largely conservative for rare earth metals.
Throughout this project, the analysis of transcriptomic responses by RNA-Seq in C. reinhardtii made it possible to characterize the bioavailability of Ce and to identify transcriptomic biomarkers of exposure in microalgae in different contexts; in the presence of ENPs or other REEs. However, the integration of such biomarkers in the development of in situ bioassays seems limited.
|
2 |
Les composés organiques volatils d’origine microbienne comme potentiels biomarqueurs d’exposition aux moisissures en milieux professionnels : développement de méthodes de quantificationTabbal, Sarah 03 1900 (has links)
Les moisissures sont considérées comme un des facteurs affectant la qualité de l'air intérieur. L'exposition professionnelle aux moisissures peut affecter la santé des travailleurs. Selon l’espèce de moisissure, la dose d'exposition et la sensibilité individuelle, les effets peuvent être irritatifs, infectieux, immunologiques, toxiques ou cancérigènes. Les méthodes classiques, basées sur le bilan environnemental des moisissures cultivables dans l'air, souffrent d'inconvénients tels que le nombre élevé d'échantillons, les analyses coûteuses et la sous-estimation de l'exposition. La croissance des moisissures peut entraîner la production de métabolites, notamment des COVm. Ces derniers, lorsque inhalés, pourraient s’accumuler dans le corps et pourraient être détectés dans les matrices biologiques des travailleurs avant et après leur quart de travail.
L'objectif principal de cette thèse est de développer une méthode permettant d’évaluer l'exposition aux moisissures en milieu de travail en exploitant les COVm comme biomarqueurs d'exposition. Le premier objectif spécifique est de développer une méthode analytique en utilisant la technique HS-SPME-CPG-SM/SM pour mesurer simultanément les 21 COVm dans le sang et l’urine. Le deuxième objectif est de développer une méthode analytique en se basant sur la technique DT-CPG-SM/SM pour analyser ces COVm dans l’air ambiant et exhalé. Le troisième objectif vise à optimiser la méthode développée dans l'air ambiant pour documenter les concentrations des COVm présents dans deux milieux de travail ayant des charges de moisissures différentes et évaluer leurs variations spatio-temporelles.
Les 21 COVm sélectionnés dans cette thèse ont un potentiel comme biomarqueurs d’exposition aux moisissures. Leur sélection a été basée sur l’intérêt pour des effets sanitaires potentiels des espèces de moisissures, l’occurrence d’émission et les paramètres physicochimiques et pharmacocinétiques des COVm.
Les paramètres d'extraction des COVm et les conditions analytiques ont été optimisés pour assurer une meilleure extraction et analyse des COVm dans le sang et l’urine. D’autre part, la méthode DT-CPG-SM/SM a été optimisée dans l’air ambiant et exhalé en testant plusieurs types d’adsorbant, débits et volumes d’air. Tenax TA/Carbograph a été sélectionné pour l’adsorption des COVm en échantillonnant 3 L d’air à 150 mL/min. Ces méthodes développées ont présenté de bonnes performances analytiques en termes de linéarité, précision, limites de détection et de quantification. Ceci a permis la quantification des COVm à faibles niveaux dans les matrices biologiques et l’air. Finalement, l’optimisation de l’analyse des prélèvements d’air d’un centre de tri des déchets et d’une université a été réalisée en utilisant la méthode DT-CPG-SM/SM. Un prélèvement de 2 heures a été sélectionné. Pour la majorité des COVm, aucune différence n’a été démontrée entre les périodes de la journée dans les milieux étudiés. À l’université, les concentrations des COVm étaient plus élevées dans les classes comparativement aux laboratoires munis d’un système de ventilation plus efficace. Au centre de tri, les concentrations des COVm étaient plus élevées dans la salle de pré-tri. Les résultats obtenus ont permis de sélectionner plusieurs COVm comme potentiels biomarqueurs d'exposition aux moisissures. Cette approche de biosurveillance pourrait donner un indice de la contamination fongique dans un milieu de travail, avant tout recours à l'approche classique, plus complexe et onéreuse. / Molds are one of the factors affecting indoor air quality. Occupational exposure to molds can have effects on workers' health. Depending on mold species, exposure dose and individual sensitivity, the health effects can be irritative, infectious, immunological, toxic, or carcinogenic. Conventional methods, based on the environmental assessment of cultivable molds in the air, have many drawbacks such as the high number of samples, the costly analyzes and the underestimation of exposure. Mold growth can lead to the production of metabolites, including mVOCs. The latter, when inhaled, could accumulate in the body, and could be detected in the biological matrices of workers before and after their shift.
The main objective of this thesis is to develop a method to assess exposure to molds in the workplace by exploiting mVOCs as biomarkers of exposure. The first specific objective is to develop an analytical method using the HS-SPME-GC-MS/MS technique to simultaneously measure the 21 mVOCs in blood and urine. The second objective is to develop an analytical method based on the TD-GC-MS/MS technique to analyze these mVOCs in ambient and exhaled air. The third objective aims to optimize the method developed in ambient air to document the concentrations of mVOCs present in two workplaces with different mold loads and to assess their spatio-temporal variations.
The 21 mVOCs selected in this thesis have potential as biomarkers of mold exposure. Their selection was based on the interest in potential health effects of the mold species, the occurrence of emission and their physicochemical and pharmacokinetic parameters of the mVOCs.
Parameters influencing the extraction process and analytical conditions have been optimized to ensure better extraction and analysis of mVOCs in blood and urine. On the other hand, the TD-GC-MS/MS method has been optimized in ambient and exhaled air by testing several types of adsorbent and several flow rates and air volumes. Tenax TA/Carbograph was selected for mVOC adsorption by sampling 3 L of air at 150 mL/min. These developed methods exhibited good performance in terms of linearity, precision and detection and quantification limits. This allowed the quantification of mVOCs at relatively low levels in biological matrices and air. Finally, the optimization of mVOCs sampling from the air of a waste sorting centre and a university, was carried out using the TD-GC-MS/MS method. A sampling time of 2 hours was selected. For the majority of mVOCs, no difference was demonstrated between the periods of the day in the two environments studied. At university, the concentrations of mVOCs were higher in classrooms compared to laboratories equipped with a more efficient ventilation system. At the sorting centre, mVOCs’ concentrations were higher in the pre-sorting room. The results obtained made it possible to select several mVOCs as potential biomarkers of exposure to molds. This new biomonitoring approach could give an indication of fungal contamination in a workplace, before resorting to the traditional approach, which is more complex and expensive.
|
Page generated in 0.1123 seconds