• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microbial properties in tropical montane forest soils developed from contrasting parent material - An incubation experiment

Kidinda, Laurent K., Olagoke, Folasade K., Vogel, Cordula, Bukombe, Benjamin, Kalbitz, Karsten, Doetterl, Sebastian 06 June 2024 (has links)
Background: Soil microbes are key drivers of carbon (C) and nutrient cycling in terrestrial ecosystems, and their properties are influenced by the relationship between resource demand and availability. - Aims: Our objective was to investigate patterns of microbial properties and their controls to understand whether they differ between soils derived from geochemically contrasting parent material in tropical montane forests. - Methods: We measured microbial biomass C (MBC/Soil), potential extracellular enzyme activity (pEEA), and assessed microbial investments in C and nutrient acquisition at the beginning and end of a 120-day laboratory incubation experiment using soils developed from three geochemically contrasting parent material (i.e., mafic, mixed sediment, and felsic) and three soil depths (0–70 cm). - Results: We found that MBC/Soil and pEEA were highest in soils developed from the mafic parent material. Microbial investment in C acquisition was highest in soils developed from mixed sedimentary rocks and lowest in soils developed from the felsic parent material. We propose that our findings are related to the strength of contrasting mineral-related C stabilization mechanisms and varying C quality. No predominant microbial investment in nitrogen (N) acquisition was observed, whereas investment in phosphorus (P) acquisition was highest in subsoils. We found lower microbial investment in C acquisition in subsoils indicating relatively high C availability, and that microbes in subsoils can substantially participate in C cycling and limit C storage if moisture and oxygen conditions are suitable. Geochemical soil properties and substrate quality were important controls on MBC/Soil per unit soil organic C (MBC/SOC), particularly after the exhaustion of labile and fast cycling C, that is, at the end of the incubation. - Conclusion: Although a laboratory incubation experiment cannot reflect real-world conditions, it allowed us to understand how soil properties affect microbial properties. We conclude that parent material is an important driver of microbial properties in tropical montane forests despite the advanced weathering degree of soils.

Page generated in 0.0724 seconds