121 |
Infield Biomass Bales Aggregation Logistics and Equipment Track Impacted Area EvaluationNavaneetha Srinivasagan, Subhashree January 2017 (has links)
Efficient bale stack location, infield bale logistics, and equipment track impacted area were conducted in three different studies using simulation in R. Even though the geometric median produced the best logistics, among the five mathematical grouping methods, the field middle was recommended as it was comparable and easily accessible in the field. Curvilinear method developed (8-259 ha), incorporating equipment turning (tractor: 1 and 2 bales/trip, automatic bale picker (ABP): 8-23 bales/trip, harvester, and baler), evaluated the aggregation distance, impacted area, and operation time. The harvester generated the most, followed by the baler, and the ABP the least impacted area and operation time. The ABP was considered as the most effective bale aggregation equipment compared to the tractor. Simple specific and generalized prediction models, developed for aggregation logistics, impacted area, and operation time, have performed well (0.88?R2?0.99). An ABP of 8 bales capacity, also capable of 11 bales/trip, was recommended. / North Dakota State University. Teaching Assistant Scholarship
|
122 |
Evaluation of Storage Techniques to Preserve Fermentable Sugars from Sugar Beets for Ethanol ProductionVargas-Ramirez, Juan Manuel January 2012 (has links)
New sugar beet varieties may qualify as an advanced biofuel feedstock in the U.S., but new alternatives to conventional pile storage are necessary to preserve fermentable sugars and allow yearlong beet ethanol production. Fermentable sugar preservation was assessed in sugar beets stored under aerobic and anaerobic atmospheres and in raw thick juice stored at acidic (2≤ pH≤ 5) and alkaline (8≤ pH≤11) conditions. Aerobic storage of sugar beets at 4°C for 14 wk resulted in higher fermentable sugar retention (99± 4%) than at 25°C or anaerobic storage at 4° C and 25° C. Raw thick juice retained ≥ 99% of fermentable sugars at pH 3.5 and 9.5 and refractometric dissolved solids content of 64.5° Bx. The changes in fermentable sugars in raw thick juice stored for 24 wk at acidic and alkaline pH were modeled by response surface methodology. Although raw thick juice was stored successfully at acidic and alkaline pH, conditions for high-efficiency fermentation must be developed.
|
123 |
The uptake of metal ions by rhizopus arrhizus biomass /Tobin, John M. (John Michael) January 1986 (has links)
No description available.
|
124 |
Short-term biomass production of red clover (Trifolium pratense L.) and its inheritanceKongkiatngam, Prasert January 1991 (has links)
No description available.
|
125 |
Synthesis of Precursors to Non-isocyanate PolyurethanesWei, Manqing January 2018 (has links)
Biobased diamines are excellent precursors for the synthesis of non-isocyanate polyurethanes (NIPUs). We have prepared several biobased diamines using three different reactions for their synthesis. In the first method, we have carried out chain elongation of cellulose-derived 2,5-diformylfuran by the Henry reaction followed by reduction of the nitroalkene. Yields of the key step: Hantzsch Ester reduction, were 70-80%. Method two involves the Friedel-Crafts alkylation of furfurylamine with different ketones under acidic conditions. Yields of large-scale alkylation reaction were 60-77%. In method three, we combined the Henry reaction and Friedel-Crafts alkylation techniques to access diamines from hemicellulose-derived furfural. These diamines can be reacted with carbonates to access hydroxyalkylcarbamates in good yields, around 80%. We have also developed a novel method for accessing biscarbamates directly from dialdehydes in good yields, 70-94%. The hydroxyalkylcarbamates and biscarbamates are valuable precursors to obtain polyurethanes via the phosgene-free route.
|
126 |
Patterns and drivers of long term spatio-temporal change in a rural savanna landscapeSaunders, James Fabian 20 January 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science
17th August 2015 in Johannesburg, South Africa / Ecosystem services provide a vital lifeline to millions of people living in rural areas. The poorest people in these areas depend upon the natural resource base in their surroundings to provide these services. With growing populations in rural areas of South Africa, the natural resource base is under considerable pressure; however, uncovering the dynamics of vegetation in these systems has proven difficult. While much attention has been given to savanna ecology, long term studies on the patterns and drivers of woody biomass are few. We used 65 years of aerial imagery (from 1944 to 2009) over 31 953 ha of rural savanna in a communal rangeland in South Africa to determine the abundance of woody canopy cover. This data were captured at hectare resolution, giving a fine enough level of detail for local level analysis. We also captured data for five potential drivers for change at this resolution, in order to analyse these drivers for their relative importance in determining woody canopy cover throughout the study period. Surprisingly, while individual sites showed varied trends in the amounts of woody canopy cover through time, when pooled across all sites the total woody canopy cover increased over the 65 year period. Disturbance gradients were found around some of the villages, but only in 2009, suggesting that the drivers of disturbance gradients in these systems may have only operated sufficiently to produce disturbance gradients in recent years. A hot spot analysis (hot spots indicate cells that have similarly high values beyond what would be expected in a random distribution, with cold spots indicating the inverse) revealed an increase in both hot and cold spots through time, but with a low persistence of both through time. High canopy cover cells are presumed to be the result of bush encroachment, while low canopy cover cells are presumed to be the result of harvesting of trees for fuelwood or clearing for fields. The low persistence of hot and cold spots points to a system in continual change, with patches of hot and cold spots appearing and disappearing, and therefore drivers of change operating in short periods of time. MAP (Mean Annual Precipitation), and not an anthropogenic driver, was found to be the most important driver for woody canopy cover throughout the study period, with MAP up to 670 mm having a predictable pattern of hot and cold spots through time. Higher MAP was shown to have a non-linear and unpredictable pattern of hot and cold spots through time, indicating that low precipitation may produce a system where woody canopy cover is less influenced by other drivers and is more stable when acted upon by other drivers. This research demonstrates the value of a long term dataset, and the applicability of our methods for monitoring woody canopy cover. As such, it may well serve as a baseline for woody canopy cover in communal savanna rangeland systems, with the methodology employed here suitable for an early warning detection system for sudden changes in the woody canopy cover.
|
127 |
Soil nitrogen amendments and insect herbivory alter above-and belowground plant biomass in an old-field ecosystemBlue, Jarrod Dwayne 01 August 2010 (has links)
Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here I investigate how nitrogen availability and insect herbivory interact to alter above- and belowground plant community biomass in an old-field ecosystem. In 2004, 36 experimental plots were established in which soil nitrogen (N) availability (at three levels) was manipulated and insect abundance (at two levels) in a completely randomized plot design. In 2009, after six years of treatment, I measured aboveground biomass and assessed root production at peak growth. Overall, I found a significant effect of soil N availability on both above- and belowground plant biomass while insects affected only aboveground biomass of subdominant plant species and coarse root production; there were no statistical interactions between N availability and insect herbivory for any response variable. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be primarily limiting production in this ecosystem. Insect herbivory altered the aboveground biomass of the subdominant plant species and altered allocation patterns to coarse root production belowground. Overall, the results of six years of nutrient amendments and insect removals suggest strong bottom-up influences on total plant community productivity.
|
128 |
NOx reduction with the use of feedlot biomass as a reburn fuelGoughnour, Paul Gordon 2006 August 1900 (has links)
Coal fired power plants produce NOx at unacceptable levels. In order to control
these emissions without major modifications to the burners, additional fuel called reburn
fuel is fired under rich conditions (10-30 % by heat) after the coal burners. Additional air
called overfire air (about 20 % of total air) is injected in order to complete combustion.
Typically reburn fuel is natural gas (NG). From previous research at TAMU, it was
found that firing feedlot biomass (FB) as reburn fuel lowers the NOx emission at
significant levels compared to NG. The present research was conducted to determine the
optimum operating conditions for the reduction of NOx. Experiments were performed in
a small scale 29.3 kW (100,000 BTU/hr) reactor using low ash partially composted FB
(LA PC FB) with equivalence ratio ranging from 1 to 1.15. The results of these
experiments show that NOx levels can be reduced by as much as 90% - 95 % when firing
pure LA PC FB and results are almost independent of. The reburn fuel was injected
with normal air and then vitiated air (12.5 % O2); further the angles of reburn injector
were set normal to the main gas flow and at 45-degrees upward. For LA PC FB no significant
changes were observed; but high ash PC FB revealed better reductions with 45-degrees injector
and vitiated air. This new technology has the potential to reduce NOx emissions in coal
fired boilers located near cattle feedlots and also relieves the cattle industry of the waste.
|
129 |
Soil nitrogen amendments and insect herbivory alter above-and belowground plant biomass in an old-field ecosystemBlue, Jarrod Dwayne 01 August 2010 (has links)
Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here I investigate how nitrogen availability and insect herbivory interact to alter above- and belowground plant community biomass in an old-field ecosystem. In 2004, 36 experimental plots were established in which soil nitrogen (N) availability (at three levels) was manipulated and insect abundance (at two levels) in a completely randomized plot design. In 2009, after six years of treatment, I measured aboveground biomass and assessed root production at peak growth. Overall, I found a significant effect of soil N availability on both above- and belowground plant biomass while insects affected only aboveground biomass of subdominant plant species and coarse root production; there were no statistical interactions between N availability and insect herbivory for any response variable. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be primarily limiting production in this ecosystem. Insect herbivory altered the aboveground biomass of the subdominant plant species and altered allocation patterns to coarse root production belowground. Overall, the results of six years of nutrient amendments and insect removals suggest strong bottom-up influences on total plant community productivity.
|
130 |
Combustion of gasified biomass: : Experimental investigation on laminar flame speed, lean blowoff limit and emission levelsBinti Munajat, Nur Farizan January 2013 (has links)
Biomass is among the primary alternative energy sources that supplements the fossil fuels to meet today’s energy demand. Gasification is an efficient and environmental friendly technology for converting the energy content in the biomass into a combustible gas mixture, which can be used in various applications. The composition of this gas mixture varies greatly depending on the gasification agent, gasifier design and its operation parameters and can be classified as low and medium LHV gasified biomass. The wide range of possible gas composition between each of these classes and even within each class itself can be a challenge in the combustion for heat and/or power production. The difficulty is primarily associated with the range in the combustion properties that may affect the stability and the emission levels. Therefore, this thesis is intended to provide data of combustion properties for improving the operation or design of atmospheric combustion devices operated with such gas mixtures. The first part of this thesis presents a series of experimental work on combustion of low LHV gasified biomass (a simulated gas mixture of CO/H2/CH4/CO2/N2) with variation in the content of H2O and tar compound (simulated by C6H6). The laminar flame speed, lean blowoff limit and emission levels of low LHV gasified biomass based on the premixed combustion concept are reported in paper I and III. The results show that the presence of H2O and C6H6 in gasified biomass can give positive effects on these combustion parameters (laminar flame speed, lean blowoff limit and emission levels), but also that there are limits for these effects. Addition of a low percentage of H2O in the gasified biomass resulted in almost constant laminar flame speed and combustion temperature of the gas mixture, while its NOx emission and blowoff temperature were decreased. The opposite condition was found when H2O content was further increased. The blowoff limit was shifted to richer fuel equivalence ratio as H2O increased. A temperature limit was observed where CO emission could be maintained at low concentration. With C6H6 addition, the laminar flame speed first decreased, achieved a minimum value, and then increased with further addition of C6H6. The combustion temperature and NOx emission were increased, CO emission was reduced, and blowoff occurs at slightly higher equivalence ratio and temperature when C6H6 content is increased. The comparison with natural gas (simulated by CH4) is also made as can be found in paper I and II. Lower laminar flame speed, combustion temperature, slightly higher CO emission, lower NOx emission and leaner blowoff limit were obtained for low LHV gas mixture in comparison to natural gas. In the second part of the thesis, the focus is put on the combustion of a wide range of gasified biomass types, ranging from low to medium LHV gas mixture (paper IV). The correlation between laminar flame speed or lean blowoff limit and the composition of various gas mixtures was investigated (paper IV). It was found that H2 and content of diluents have higher influence on the laminar flame speed of the gas mixture compared to its CO and hydrocarbon contents. For lean blowoff limit, the diluents have the greatest impact followed by H2 and CO. The mathematical correlations derived from the study can be used to for models of these two combustion parameters for a wide range of gasified biomass fuel compositions. / <p>QC 20130411</p>
|
Page generated in 0.0349 seconds