• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bitumen in Neolithic Iran: Biomolecular and isotopic evidence.

Gregg, M.W., Brettell, Rhea C., Stern, Ben January 2007 (has links)
no / This paper presents the results of the chemical analysis of materials recovered from two of the earliest agricultural villages in southwestern Iran and a late Neolithic pastoral encampment in nearby Khuzistan. Gas chromatography - mass spectrometry (GC-MS) revealed biomarker compounds characteristic of bitumen in residues from ceramic vessels supporting the excavators¿ contention that the interior surfaces of some vessels were coated with a thin layer of such material and confirmed that ¿fragments¿ collected during excavation were indeed bitumen. Biomolecular and isotopic analysis of the bitumen indicated that the sources utilized lie in the Susa and Deh Luran regions of southwestern Iran. / NERC (MSc); AHRC (PhD)
2

Tracing the dynamic life story of a Bronze Age Female

Frei, K.M., Mannering, U., Kristiansen, K., Allentoft, M.E., Wilson, Andrew S., Skals, I., Tridico, S., Nosch, M.L., Willerslev, E., Clarke, Leon J., Frei, R. 26 March 2015 (has links)
Yes / Ancient human mobility at the individual level is conventionally studied by the diverse application of suitable techniques (e.g. aDNA, radiogenic strontium isotopes, as well as oxygen and lead isotopes) to either hard and/or soft tissues. However, the limited preservation of coexisting hard and soft human tissues hampers the possibilities of investigating high-resolution diachronic mobility periods in the life of a single individual. Here, we present the results of a multidisciplinary study of an exceptionally well preserved circa 3.400-year old Danish Bronze Age female find, known as the Egtved Girl. We applied biomolecular, biochemical and geochemical analyses to reconstruct her mobility and diet. We demonstrate that she originated from a place outside present day Denmark (the island of Bornholm excluded), and that she travelled back and forth over large distances during the final months of her life, while consuming a terrestrial diet with intervals of reduced protein intake. We also provide evidence that all her garments were made of non-locally produced wool. Our study advocates the huge potential of combining biomolecular and biogeochemical provenance tracer analyses to hard and soft tissues of a single ancient individual for the reconstruction of high-resolution human mobility. / The Danish National Research Foundation; The Carlsberg Foundation, L'Oreal Denmark-UNESCO; The ERC agreement no. 269442
3

COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION OF MICROFLUIDICS INTO BIOPHYSICAL INTERACTION

Hui Ma (18429456) 24 April 2024 (has links)
<p dir="ltr">Microfluidic techniques have been widely adopted in biomedical research due to the pre- cise control of fluids, small volume requirement, low cost and etc, and have boosted the development of biomolecular interaction analysis, point-of-care diagnostics, and biosensors.</p><p dir="ltr">Protein-protein interaction plays a key role in biological, biomedical and pharmaceutical research. The technical development of biosensors, new drugs and vaccines, and disease diagnostics heavily rely on the characterization of protein-protein interaction kinetics. The current gold standard assays for measuring protein-protein interaction are surface plasmon resonance (SPR), and bio-layer interferometry (BLI). These commercial devices are accurate but expensive, however.</p><p dir="ltr">Here, I have developed new microfluidic techniques and models in protein-protein in- teraction kinetics measurement, rotational diffusion coefficient modeling, electrochemical impedance spectroscopy-based biosensors, and two-phase porous media flow models. Firstly, I applied particle diffusometry (PD) in the streptavidin-biotin binding kinetics measurement, utilizing a Y-junction microchannel. Secondly, to reduce solution volumes used in an analysis experiment, I designed a low-volume chip and coupled it with PD to measure the binding kinetics of human immunodeficiency virus p24 antibody-antigen interactions. Thirdly, con- sidering the Brownian motion of the non-symmetric particles, I developed a new model to efficiently compute particles’ rotational diffusion coefficients. Fourthly, to make economic biosensors to detect multiple biomarkers, I created a new chip, enabling hundreds of tests in a single droplet (∼ 50 μL) on one chip. Finally, to understand the liquid flow in porous media, such as nitrocellulose in lateral flow assays, I built a new two-phase porous media flow model based on the Navier-Stokes equation and compared it with experiments. These techniques and models underwent rigorous experimental and computational validation, demonstrating their effectiveness and performance.</p>

Page generated in 0.0594 seconds