• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 193
  • 105
  • 50
  • 25
  • 10
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 517
  • 120
  • 116
  • 68
  • 58
  • 58
  • 51
  • 50
  • 45
  • 41
  • 40
  • 38
  • 35
  • 33
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

A Novel Computational Approach for the Management of Bioreactor Landfills

Abdallah, Mohamed E. S. M. 13 October 2011 (has links)
The bioreactor landfill is an emerging concept for solid waste management that has gained significant attention in the last decade. This technology employs specific operational practices to enhance the microbial decomposition processes in landfills. However, the unsupervised management and lack of operational guidelines for the bioreactor landfill, specifically leachate manipulation and recirculation processes, usually results in less than optimal system performance. Therefore, these limitations have led to the development of SMART (Sensor-based Monitoring and Remote-control Technology), an expert control system that utilizes real-time monitoring of key system parameters in the management of bioreactor landfills. SMART replaces conventional open-loop control with a feedback control system that aids the human operator in making decisions and managing complex control issues. The target from this control system is to provide optimum conditions for the biodegradation of the refuse, and also, to enhance the performance of the bioreactor in terms of biogas generation. SMART includes multiple cascading logic controllers and mathematical calculations through which the quantity and quality of the recirculated solution are determined. The expert system computes the required quantities of leachate, buffer, supplemental water, and nutritional amendments in order to provide the bioreactor landfill microbial consortia with their optimum growth requirements. Soft computational methods, particularly fuzzy logic, were incorporated in the logic controllers of SMART so as to accommodate the uncertainty, complexity, and nonlinearity of the bioreactor landfill processes. Fuzzy logic was used to solve complex operational issues in the control program of SMART including: (1) identify the current operational phase of the bioreactor landfill based on quantifiable parameters of the leachate generated and biogas produced, (2) evaluate the toxicological status of the leachate based on certain parameters that directly contribute to or indirectly indicates bacterial inhibition, and (3) predict biogas generation rates based on the operational phase, leachate recirculation, and sludge addition. The later fuzzy logic model was upgraded to a hybrid model that employed the learning algorithm of artificial neural networks to optimize the model parameters. SMART was applied to a pilot-scale bioreactor landfill prototype that incorporated the hardware components (sensors, communication devices, and control elements) and the software components (user interface and control program) of the system. During a one-year monitoring period, the feasibility and effectiveness of the SMART system were evaluated in terms of multiple leachate, biogas, and waste parameters. In addition, leachate heating was evaluated as a potential temperature control tool in bioreactor landfills. The pilot-scale implementation of SMART demonstrated the applicability of the system. SMART led to a significant improvement in the overall performance of the BL in terms of methane production and leachate stabilization. Temperature control via recirculation of heated leachate achieved high degradation rates of organic matter and improved the methanogenic activity.
182

Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils in a roller baffled bioreactor

Yu, Ruihong 26 July 2006
Contamination of soil with Polycyclic Aromatic Hydrocarbons (PAHs) is a serious environmental issue because some PAHs are toxic, carcinogenic and mutagenic. Bioremediation is a promising option to completely remove PAHs from the environment or convert them to less harmful compounds. One of the main challenges in bioremediation of PAHs in a conventional roller bioreactor is the limitation on mass transfer due to the strong hydrophobicity and low water solubility of these compounds. To address this challenge, a novel bead mill bioreactor (BMB) was developed by Riess et al. (2005) which demonstrated a significant improvement in the rates of mass transfer and biodegradation of PAHs. <p> In this study, to further improve mass transfer rates, baffles have been installed in both the conventional and bead mill bioreactors. Mass transfer rates of 1000 mg L-1 suspended naphthalene, 2-methylnaphthalene and 1,5-dimethylnaphthalene, three model compounds of PAHs, have been investigated in four bioreactors: conventional (control), baffled, BMB and baffled bead mill bioreactors. The baffled bioreactor provided mass transfer coefficients (KLa) that were up to 7 times higher than those of the control bioreactor. <p> Bioremediation of suspended naphthalene or 2-methylnaphthalene as a single substrate and their mixtures was studied using the bacterium <i>Pseudomonas putida </i>ATCC 17484. Both baffled and bead mill bioreactors provided maximum bioremediation rates that were 2 times higher than the control bioreactor. The maximum bioremediation rates of 2-methylnaphthalene were further increased in the presence of naphthalene by a factor of 1.5 to 2 compared to the single substrate. <p> Another rate-limiting step for bioremediation of PAH-contaminated soil is the strong sorption between the contaminant and soil. To find out the effect of sorption on the bioavailability of naphthalene, the appropriate sorption isotherms for three types of soils (sand, silt and clay) have been determined. It was observed that the sorption capacity of soils for naphthalene was proportional to the organic carbon content of the soils. The mass transfer of soil-bound naphthalene from the artificially prepared contaminated soils with short contamination history to the aqueous phase was studied in both the control and bead mill bioreactors. It was observed that the mass transfer was unexpectedly fast due to the increased interfacial surface area of naphthalene particles and the weak sorption between naphthalene and soils. It was concluded that artificially, naphthalene contaminated soils would likely not be any more difficult to bioremediate than pure naphthalene particles.
183

The application of a membrane bioreactor for wastewater treatment on a northern Manitoban Aboriginal community

Frederickson, Kristinn Cameron 06 January 2006 (has links)
Water infrastructure on Aboriginal communities in Canada, and specifically Northern Manitoba is in sub-standard condition. A recent Government of Canada study indicated that an estimated $1.5 billion would need to be spent to improve this infrastructure. September 2003 through July 2004, an examination of the effectiveness of a membrane bioreactor (MBR) in a Northern Manitoban Aboriginal community took place. This study was intended to identify and test an appropriate and effective solution for the lack of adequate wastewater treatment in these communities. The MBR system, employing a Zenon ZW-10 ultrafiltration membrane, was designed and constructed at the University of Manitoba. It was installed and tested in two phases at the Opaskwayak Cree Nation Reserve in Northern Manitoba. Phase I was a direct comparison between the pilot-scale MBR and the community’s existing Sequencing Batch Reactor (SBR) with sand filter. This phase occurred from September 2003 until December 2003. The MBR, with an SRT of 20-days and an HRT of 10 hours, outperformed the SBR in every category despite 2 mechanical/electrical failures that resulted in the loss of biomass from the MBR. The SBR/Sand filter combination had BOD, TSS, and TKN concentrations of 30.3 mg/L, 27.5 mg/L, and 8.4 mg/L, respectively. By comparison, the BOD, TSS, and TKN concentrations in the MBR effluent were <6 mg/L, <5 mg/L, and 1.3 mg/L respectively. Phase II, from March 2004 through July 2004, tested the overall MBR efficacy and intended to assess a novel remote control and monitoring system. The MBR SRT was adjusted to 40-days and, as expected, the MBR MLVSS concentration increased to a relatively stable 5000 mg/L. The MBR continued to provide high quality effluent with some exceptions. Despite the 0.034 μm pore size, the total coliforms and TSS measured in the effluent were higher than in Phase I. This indicates a compromised membrane, faulty sampling procedures, or biological regrowth downstream of the membrane. This failure could point to the need for some form of tertiary disinfection. Also in Phase II, a remote control and monitoring program was implemented. The controlling PC was controlled via the internet using pcAnywhere software. The software allowed for real-time monitoring and complete control of the pilot system. In conclusion, the pilot-scale MBR yielded consistent, high quality wastewater effluent and this would benefit the pristine environments existing in Manitoba’s north. The potential hands-free operation could be utilized to provide support to communities lacking sufficient wastewater treatment know-how. / February 2006
184

A Novel Computational Approach for the Management of Bioreactor Landfills

Abdallah, Mohamed E. S. M. 13 October 2011 (has links)
The bioreactor landfill is an emerging concept for solid waste management that has gained significant attention in the last decade. This technology employs specific operational practices to enhance the microbial decomposition processes in landfills. However, the unsupervised management and lack of operational guidelines for the bioreactor landfill, specifically leachate manipulation and recirculation processes, usually results in less than optimal system performance. Therefore, these limitations have led to the development of SMART (Sensor-based Monitoring and Remote-control Technology), an expert control system that utilizes real-time monitoring of key system parameters in the management of bioreactor landfills. SMART replaces conventional open-loop control with a feedback control system that aids the human operator in making decisions and managing complex control issues. The target from this control system is to provide optimum conditions for the biodegradation of the refuse, and also, to enhance the performance of the bioreactor in terms of biogas generation. SMART includes multiple cascading logic controllers and mathematical calculations through which the quantity and quality of the recirculated solution are determined. The expert system computes the required quantities of leachate, buffer, supplemental water, and nutritional amendments in order to provide the bioreactor landfill microbial consortia with their optimum growth requirements. Soft computational methods, particularly fuzzy logic, were incorporated in the logic controllers of SMART so as to accommodate the uncertainty, complexity, and nonlinearity of the bioreactor landfill processes. Fuzzy logic was used to solve complex operational issues in the control program of SMART including: (1) identify the current operational phase of the bioreactor landfill based on quantifiable parameters of the leachate generated and biogas produced, (2) evaluate the toxicological status of the leachate based on certain parameters that directly contribute to or indirectly indicates bacterial inhibition, and (3) predict biogas generation rates based on the operational phase, leachate recirculation, and sludge addition. The later fuzzy logic model was upgraded to a hybrid model that employed the learning algorithm of artificial neural networks to optimize the model parameters. SMART was applied to a pilot-scale bioreactor landfill prototype that incorporated the hardware components (sensors, communication devices, and control elements) and the software components (user interface and control program) of the system. During a one-year monitoring period, the feasibility and effectiveness of the SMART system were evaluated in terms of multiple leachate, biogas, and waste parameters. In addition, leachate heating was evaluated as a potential temperature control tool in bioreactor landfills. The pilot-scale implementation of SMART demonstrated the applicability of the system. SMART led to a significant improvement in the overall performance of the BL in terms of methane production and leachate stabilization. Temperature control via recirculation of heated leachate achieved high degradation rates of organic matter and improved the methanogenic activity.
185

Rening av avloppsvatten med anaerob membranbioreaktor och omvänd osmos / Wastewater treatment with anaerobic membrane bioreactor and reverse osmosis

Grundestam, Jonas January 2006 (has links)
This master's theses was carried out on assignment from Stockholm Vatten AB as a part of a project developing new waste water treatment techniques. The goal of the theisis has been to evaluate an anaerobic membrane bioreactor for treatment of waste water from Hammarby Sjöstad. The bioreactor has not been heated and the main interest has been to study the gas production, power consumption and the reduction of organic matter and nutrients. The system has been completed with a reverse osmosis unit and a total of four batch runs have been made with good results. The use of reverse osmosis allows nutrient in the waste water to be reintroduced into circulation as the reverse osmosis concentrate can be used as crop nutrient. The membrane unit is of VSEP ("Vibratory Shear Enhanced Processing") type and an extensive membrane test has been conducted. This so called L-test helped determine the most suitable type of membrane for the system to allow a higher ±ux and thus lower power consumption. The L-test gave good results and a new membrane with a poresize diameter of 0,45 μm was used. The organic load on the bioreactor has been more or less constant, around 0,7 kg COD/day, during the seven weeks of testing. The reduction over the entire system including reverse osmosis has been large, around 99 % regarding organic matter and phosporus and 93 % for nitrogen, making the system suitable for waste water treatment except for high power consumption, around 2 kWh/m3. The production of methanegas has worked although it has been quite low, with average values of 0,13 m3 CH4/kg reduced COD. / Examensarbetet är utfört på uppdrag av Stockholm Vatten AB som en del av det pilotprojekt som utvärderar nya tekniker för avloppsvattenrening för Hammarby Sjöstad. Målsättningen med studien har varit att utvärdera ett system bestående av en anaerob membranbioreaktor för behandling av avloppsvatten från Hammarby Sjöstad. Bioreaktorn har inte varit uppvärmd och det som har studerats är reningseffekten, biogasproduktionen samt energiåtgången. Systemet har även innefattat en omvänd osmosanläggning och totalt har fyra försök med denna gjorts med goda resultat. Analyser har koncentrerats till att utvärdera reduktion av organiskt material över membranbioreaktorn och av närsalter och metaller över omvänd osmos anläggningen. Bakgrunden till att använda omvänd osmos är att öka återföringen av näringsämnen från avloppsvatten. Resultatet av försöken med omvänd osmos gav ett koncentrat med högt näringsinnehåll och låg halt av tungmetaller vilket ger möjligheten att sprida det på åkermark. Membranenheten är av typen VSEP ("Vibratory Shear Enhanced Processing") och ett membrantest har även utfötts för att finna det membran som passar systemet bäst med avseende på flöde och energiförbrukning. Det så kallade L-testet var omfattande och gav en klar bild över vad som skulle vara det bästa membranet. Det membran som visade sig passa systemet bäst var ett membran med en porstorlek på 0,45 μm. Belastningen av organiskt material på reaktorn under försöksperiodens sju veckor har varit mer eller mindre konstant och låg, cirka 0,7 kg COD/dygn. Reduktionen över hela systemet inklusive omvänd osmosanläggningen med avseende på organiskt material och fosfor har varit mycket hög, omkring 99 %. Reduktionen av kväve var som högst 93 %. Gasproduktionen har fungerat och har i genomsnitt varit omkring 0,13 m3 CH4/kg reducerad COD. Energiförbrukningen för systemet i motsvarande fullskala blev omkring 2 kwh/m3.
186

Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils in a roller baffled bioreactor

Yu, Ruihong 26 July 2006 (has links)
Contamination of soil with Polycyclic Aromatic Hydrocarbons (PAHs) is a serious environmental issue because some PAHs are toxic, carcinogenic and mutagenic. Bioremediation is a promising option to completely remove PAHs from the environment or convert them to less harmful compounds. One of the main challenges in bioremediation of PAHs in a conventional roller bioreactor is the limitation on mass transfer due to the strong hydrophobicity and low water solubility of these compounds. To address this challenge, a novel bead mill bioreactor (BMB) was developed by Riess et al. (2005) which demonstrated a significant improvement in the rates of mass transfer and biodegradation of PAHs. <p> In this study, to further improve mass transfer rates, baffles have been installed in both the conventional and bead mill bioreactors. Mass transfer rates of 1000 mg L-1 suspended naphthalene, 2-methylnaphthalene and 1,5-dimethylnaphthalene, three model compounds of PAHs, have been investigated in four bioreactors: conventional (control), baffled, BMB and baffled bead mill bioreactors. The baffled bioreactor provided mass transfer coefficients (KLa) that were up to 7 times higher than those of the control bioreactor. <p> Bioremediation of suspended naphthalene or 2-methylnaphthalene as a single substrate and their mixtures was studied using the bacterium <i>Pseudomonas putida </i>ATCC 17484. Both baffled and bead mill bioreactors provided maximum bioremediation rates that were 2 times higher than the control bioreactor. The maximum bioremediation rates of 2-methylnaphthalene were further increased in the presence of naphthalene by a factor of 1.5 to 2 compared to the single substrate. <p> Another rate-limiting step for bioremediation of PAH-contaminated soil is the strong sorption between the contaminant and soil. To find out the effect of sorption on the bioavailability of naphthalene, the appropriate sorption isotherms for three types of soils (sand, silt and clay) have been determined. It was observed that the sorption capacity of soils for naphthalene was proportional to the organic carbon content of the soils. The mass transfer of soil-bound naphthalene from the artificially prepared contaminated soils with short contamination history to the aqueous phase was studied in both the control and bead mill bioreactors. It was observed that the mass transfer was unexpectedly fast due to the increased interfacial surface area of naphthalene particles and the weak sorption between naphthalene and soils. It was concluded that artificially, naphthalene contaminated soils would likely not be any more difficult to bioremediate than pure naphthalene particles.
187

Functional Tissue Engineering of Cartilage Using Adipose-derived Stem Cells

Estes, Bradley Thomas 31 March 2008 (has links)
<p>Articular cartilage is the thin, load-bearing connective tissue that lines the ends of long bones in diarthroidal joints, providing predominantly a mechanical function. Because cartilage is avascular and aneural, it has little capacity for self-repair if damaged. One repair strategy is through a functional tissue engineering approach using adipose-derived stem cells (ASCs). ASCs are an abundant progenitor cell source easily obtained through a minimally invasive liposuction procedure. When appropriately stimulated, ASCs have demonstrated significant potential for chondrogenic differentiation. Though studies have demonstrated the ability of ASCs to synthesize cartilage-specific macromolecules, a more thorough understanding of factors that modulate ASC chondrogenesis is required. Accordingly, the central aim of this dissertation was to study the chondrogenic response of ASCs to biochemical, biomechanical, and biomaterial factors.</p><p>We hypothesized that factors, other than TGF-beta and dexamethasone, would improve ASC chondrogenesis. BMP-6 emerged as a potent regulator of ASC chondrogenesis, particularly in early culture, as noted by significant upregulation of cartilage-specific extracellular matrix (ECM) genes and downregulation of cartilage hypertrophy markers.</p><p>Hypothesizing that biomechanical factors would accelerate the formation of cartilage-specific macromolecules, we designed and manufactured an instrument to apply dynamic deformational loading to ASC seeded constructs. Dynamic loading significantly inhibited ASC metabolism and downregulated cartilage-specific ECM genes. However, 21 days of dynamic loading induced the production of type II collagen, a principal component of articular cartilage.</p><p>We hypothesized that a biomaterial derived from cartilage would serve as a bioactive scaffold and induce chondrogenic differentiation. The novel, ECM-derived scaffold promoted the most robust differentiation of ASCs relative to both biochemical and biomechanical factors, particularly noted by a type II collagen-rich matrix after 28 days of culture. After 42 days of culture, biphasic mechanical testing revealed an aggregate modulus of 150 kPa, approaching that of native cartilage. These data suggest that the ECM-derived scaffold may retain important signaling molecules to drive differentiation or that ASC differentiation is dependent on proper cell anchorage.</p><p>In summary, we have shown that biochemical, biomechanical, and biomaterial factors have strong influences on the chondrogenic potential of ASCs. Optimization of these factors will ultimately be required to successfully engineer a functional tissue.</p> / Dissertation
188

Application of membrane bioreactor in the industrial wastewater treatment system

Huang, Ming-Ho 23 August 2010 (has links)
Wastewater recycling and reuse is an important issue in the coming years due to the increasing water demand and the decreasing water supply. MBR (membrane bioreactor) technology has become an important pretreatment technology for reclaiming treated effluent from, for example, domestic, dyestuff, and pharmaceutical wastewater plants. However, variations in wastewater flow rate and polluted materials can be a great influence to the performance of MBR. The applications of MBR to the treatment of various industrial wastewaters are worthy of further investigation. The present study investigated performances of MBR for treating wastewaters from a tannery plant and an industrial park. In addition, a pilot-scale UASB (upflow anaerobic sludge blanket) reactor was used for the pretreatment of the tannery plant wastewater for COD (chemical oxygen demand) removal. Results from tannery wastewater treatment indicate that using effluent from the activated sludge ponds of plant A as an influent to the pilot MBR, COD and SS (suspended solids) of the MBR filtrates could always be kept at <100 and <30 mg/L, respectively. Both COD and SS of the filtrates meet effluent regulations of <160 and <30 mg/L, respectively. The operation conditions were HRT (hydraulic retention time) = 12.2-20.4 hr, flux = 4.92-8.17 L/m2.hr, and MLSS (mixed liquor suspended solids) = 5,060-37,800 mg/L. Because the effluent had high TDS (total dissolved solids) contents of 8,700-9,700 mg/L resulted from chloride and sulfate ions, the permissible operational fluxes (4.92-8.17 L/m2.hr) were far below the normal ones (20-30 L/m2.hr). Experiments from the UASB test indicate that on an average 70% of the influent COD (2,200 mg/L) could be removed. Wastewater plant for the industrial park had influent and effluent COD of 93-144 and 11-65 mg/L, respectively. By the MBR with EBRT of 2.16-12.2 hr, flux of 5.0-28 L/m2.hr, and MLSS of 1,550 mg/L, the filtrates had COD of 11-81 mg/L. In addition, COD of the MBR filtrates could be decreased from 77 to 20-40 mg/L after supplementation of PAC (powdered activated carbon) at a concentration of 500 mg/L, and a clearer filtrate was obtained. After 30 days of operation, COD of the filtrates could be maintained at 30-48 mg/L. Regular addition of PAC to the MBR reactor is necessary for keeping the effluent quality to meet the reuse requirements.
189

Removal Of Endocrine Disrupter Compounds And Trace Organics In Membrane Bioreactors

Komesli, Okan Tarik 01 July 2012 (has links) (PDF)
Endocrine disrupters and trace organic contaminants are recently recognized contaminants in wastewaters. Current concept is the multibarier approach where the contaminants are removed from the water cycle both by water and wastewater treatment facilities, as well as natural die-away. In this thesis work LC/MS/MS determination of selected EDC compounds, namely, diltiazem, progesterone, estrone, carbamazepine, benzyl butyl phthalate and acetaminophen, at ultra trace levels, have been carried out by optimizing analytical parameters. In addition, new methods were developed for their analysis in sludge samples at sub ppb levels. Following optimization and method development, occurrence of these contaminants in wastewaters and their removal in two full-scale and two pilot-scale membrane biological reactors (MBRs) was studied. Progesterone, estrone and acetaminophen were completely removed from wastewater by biodegradation. CBZ and diltiazem were not removed at all during the study. There was little effect of flux and sludge retention times on the removal of selected EDCs in these membrane plants. In SBR combined with membrane filtration, 13 different micropollutants, including Fluoxetine (FLX), Ibuprofen (IBP), Naproxen (NPX), Diclofenac (DCF), Carbamazepine (CBZ), Trimethoprim (TMP), Roxithromycin (ROX), Erythromycin (ERY), Sulfamethoxazole (SMX), Diazepam (DZP), Galaxolide (GLX), Tonalide (TON), Celestolide (CEL). CEL, GLX, TON and FLX were removed by adsorption onto the sludge while ROX, ERY, SMX, IBP and NPX were removed by biological degradation. The CBZ, DZP, TMP and DCF were not removed by biodegradation or adsorption. Whereas, following the addition of powdered activated carbon, all these compounds were removed entirely from the wastewater stream by accumulating in sludge.
190

Study of Impacts on Waste Activity in the Bioreactor and on Water Quality in the River and Ocean Environment with Effluents Discharges from Tainan Technology Industrial Park

Yang, Cheng-Chen 26 July 2002 (has links)
This study aimed to investigate the activity change of the sludge in a bioreactor after the addition of industrial wastewater and the influence on water quality of nearby waterway after the entrance of the treated effluent. Furthermore, with respect to the industrial effluent¡¦s direct discharge to the near sea, the investigation of water quality was also undertaken to set up the database of water quality for the related receiving waters and further to provide information useful for the future monitoring and assessing the possible water pollution caused by the Tainan Technology Industrial Park (TTIP). At this present study, the TTIP, which was not at the stage of formal operation, was selected as the research object to investigate the possible adverse effects of the effluent from Hi-tech industries on the environment. In the first part of this study, several techniques for sludge diagnosis were used to evaluate the activity of sludge in various types of wastewaters in order to choose appropriate biological indices to represent the performance of a bioreactor. The results showed that dissolved oxygen was proportional to DHA concentration and number of bacteria. In addition, that both suspended solids (SS) and volatile suspended solids (VSS) had poor correlation with dissolved oxygen led to their failure to be the biological indices. In the second part of this study, the influence on the water quality after the treated wastewater discharged into the nearby receiving waters was investigated. The results of field investigation showed that the effluent did not cause significant negative effects on the receiving waters but positive effects instead due to its lowering the concentrations of water pollutants. Summarily, the effluent emitted from the TTIP had no significant impact on the nearby receiving waters by now. However, in the future, when most of the factories in the park begin to produce products, further studies are required to make sure whether the effluent will cause adverse impact on the nearby water environments.

Page generated in 0.0479 seconds