271 |
Unlocking the Secrets of Avocado Oil BiosynthesisKilaru, Aruna, Chao, Xia, Mockaitis, Keithanne, Ohlrogge, John 13 January 2013 (has links)
Avocado is an economically important crop with ~ 60-70 % oil, by dry weight, in its fruit mesocarp tissue. The steady increase in global demand for avocado (9% per year) has driven interest to identify the biochemical and molecular factors that regulate its triacylglycerol (TAG, oil) biosynthesis. Using 454- and Illumina-based RNA-Seq approaches, we examined the transcriptional basis for TAG biosynthesis in developing mesocarp of avocado. Deep transcriptional profiling data allowed us to identify several transcripts that were differentially represented between the early and late developmental stages of mesocarp. Further analysis of the transcriptome, during oil accumulation, revealed an increased expression of genes mostly associated with fatty acid biosynthesis in plastid but not that of TAG assembly in the endoplasmic reticulum. This pattern of expression was similar to that previously observed in other seed and non-seed tissues. Moreover, WRINKLED1 transcription factor, a regulatory element associated with oil biosynthesis in seed and non-seed tissues of monocot and dicot plants, was identified in avocado as well. Our studies point to distinctive modes of regulation of fatty acid biosynthesis and TAG assembly that are conserved in both seed and non-seed oil-rich plants.
|
272 |
Insights into Oil Biosynthesis in Nonseed TissuesKilaru, Aruna 01 January 2017 (has links)
No description available.
|
273 |
Molecular characterisation of membrane transporters associated with saxitoxin biosynthesis in cyanobacteriaPengelly, Jasper John Lobl, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
The release of the neurotoxic alkaloid saxitoxin by cyanobacterial cells was previously thought to occur primarily after cell lysis, yet recent evidence also suggests active toxin export by membrane transporters. Transporter proteins associated with STX biosynthesis in Cylindrospermopsis raciborskii T3 (sxtF and sxtM) and Anabaena circinalis 131C (naDt) were predicted to be involved in the export of STX from cyanobacterial cells. The main aim of this project was to characterise the transporters associated with STX biosynthesis, by investigation of their genetic prevalence, functional substrates and specific regulation. An sxtM homologue was discovered in A. circinalis 131C, as part of an sxt cluster, and found to be uniquely associated with STX-producing strains. Bioinformatic and phylogenetic analysis showed that the translated sxt transporters clustered with the NorM prokaryotic MATE sub-family and membrane topology analysis predicted 12 membrane-spanning regions. To characterise the functional substrates of the putative STX-transporters, they were heterologously expressed in the antibiotic-sensitive E. coli strain KAM32. Expression of the sxt MATES complemented host sensitivity to the cationic fluroquinolone antibiotics, ciprofloxacin and ofloxacin. Disruption of gene homologues of naDt and the sxt MATE genes in Synechocystis sp. PCC6803 yielded mutant strains with increased sensitivity to the toxic organic cations, methyl viologen and acriflavine. Transcription of the putative STX transporters, and the putative STX biosynthesis gene sxtA, was studied in C. raciborskii T3 and A. circinalis 131C under alkali and Na+ stress. Alkali stress (pH 9) decreased total STX levels in A. circinalis 131C and was correlated with a down-regulation of the putative transport and biosynthetic genes. In C. raciborskii T3, alkali stress promoted higher extracellular but lower intracellular STX levels, which also correlated with large increases in transcription of the putative STX transport genes.
|
274 |
Biosynthesis and translocation of secondary metabolite glycosides in the grapevine Vitis vinifera L.Gholami, Mansour. January 1996 (has links) (PDF)
Copies of author's previously published articles inserted. Bibliography: leaves 121-144. This study investigates the site of biosynthesis of flavour compounds in the grapevine. Most of the secondary metabolites, including flavour compounds, are glycosylated and stored in plant tissues as glycosides. The chemical properties of these compounds, especially their water solubility, suggests that glycosides might be forms of translocated secondary metabolites in plants.
|
275 |
Biosynthetic studies of fungal diterpene antibiotics /Yao, Qingmei. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 150-161). Also available on the World Wide Web.
|
276 |
Characterization of a novel cellulose biosynthesis inhibitor, CBI28, in Gluconacetobacter xylinusHarripaul, Ricardo Simeon 01 May 2010 (has links)
To study the underlying mechanisms for microbial cellulose biosythesis, a novel compound, CBI28, was used as an inhibitor along with classical genetics and EMS mutagenesis. An EZ-Link Biotin Hydrazide Kit was used to create a CBI28-Biotin conjugate for further studies. Gluconacetobacter xylinus cells were exposed to 10 uM CBI28 to induce cellulose biosythesis inhibition, lysed and small hydrophobic molecules were extracted using methanol and Waters Oasis HLB SPE-Paks. Samples were separated and detected using the Ultra Performance Liquid Chromatograph-Mass Spectrometer/Photo Diode Array. Putative mutants were isolated but did not survive for further study. An ion with the expected mass of a CBI28-Biotin conjugate (552 m/z) was detected but not in sufficiently high concentrations for characterization. Metabolite studies revealed putative metabolites derived from the HLB SPE and methanol extractions with no significant difference in extraction methods. Potential metabolites with masses of ~281.77 m/z and ~79 m/z were detected in CBI28 exposed cells. Further analysis needs to be performed to determine if CBI28 metabolites prevent cellulose production. / UOIT
|
277 |
Cellulose biosynthesis inhibitors modulate defense transcripts and regulate genes that are implicated in cell wall re-structuring in arabidopsisMortaji, Zahra 01 June 2011 (has links)
The cell wall is a multifunctional structure which is implicated in plant growth and development as well as responding to any environmental changes including biotic and abiotic stresses. One of the practical approaches in cell wall integrity studies is the modification of the quality and quantity of particular cell wall components or destroying the specific step in cell wall synthesis pathway using Cellulose Biosynthesis Inhibitors (CBIs). In this case, chemical screen for swollen organ phenotype has proved to be an important technique to identify the genes that are directly or indirectly involved in cellulose biosynthesis.
In the present research, a number of synthetic CBIs were obtained through a chemical library screen from Chembridge Company for the root swollen phenotype which is believed to be the response to a defect in cellulose biosynthesis. Therefore, a genome-wide expression profiling based on Affymetrix ATH1 GeneChip arrays (contains 22810 probe sets) were applied to investigate the altered transcriptome of four different CBIs including CBI-15, 18, 22, and 27 and isoxaben in 5 day-old Arabidopsis thaliana seedlings. The results of this project revealed overlapped up and down-regulated genes as well as discriminate responses to each CBI. The most striking modification were found in genes involve in response to the stress as well as cell wall integrity and restructuring. Thus, the identification of regulated genes under CBIs treatment suggests a robust candidate group of genes that likely to be correlated to cell wall biosynthesis. / UOIT
|
278 |
The molecular weight distributions of bacterial cellulose as a function of synthesis time.Ring, Gerard J. F. 01 January 1980 (has links)
No description available.
|
279 |
Probing the Biosynthesis and Mode of Action of Azinomycin BKelly, Gilbert Thomson 2009 August 1900 (has links)
Since the isolation of azinomycins A and B in 1954 from the soil bacterium,
Streptomyces sahachiroi, these natural products have been synthetic targets. Both compounds
exhibit in vitro cytotoxic activity at submicromolar levels and demonstrate anti-tumor activities
comparable to that of mitomycin C in vivo. Unique to this class of natural products is the
presence of an aziridine [1,2-a] pyrrolidine ring system. Coupled with an epoxide moiety, these
structural functionalities impart the ability to form interstrand cross-links with DNA via the
electrophilic C10 and C21 carbons of azinomycin and the N7 positions of suitably disposed
purine bases.
This dissertation investigates the global impact of azinomycin B treatment in a yeast
model with special emphasis on DNA damage response, the resulting cell cycle effects, and
cellular localization of the compound. The results provide the first demonstration of the in vivo
actions of azinomycin B and are consistent with the proposed role of the drug as a DNA crosslinking
agent. Biosynthesis of azinomycin B was investigated and appears to have polyketide,
non-ribosomal peptide synthetase and alkaloid origins. In pursuit of elucidating the biosynthetic
origin we developed both a cell culturing system and a cell-free extract procedure capable of
supporting azinomycin synthesis; we used these. These were employed with labeled metabolites
to probe the biosynthetic origins of the molecule. Investigations with this enzyme preparation
imparted important information regarding the substrate and cofactor requirements of the
pathway. These results supported the premise of a mixed origin for the biosynthesis of the
molecule and paved the way for expansive stable isotope labeling studies, which largely revealed
the biosynthetic precursors and probable construction of the azinomycins. Some of these studies
corroborate while other results conflict with initial proposed biosynthetic routes based upon the
azinomycin biosynthetic gene cluster sequence. Future azinomycin biosynthetic gene cluster enzyme characterization, mechanistic
investigations, and genetic modifications will ultimately provide definitive proof for the
intermediacy of proposed biosynthetic precursors and the involvement of specific cofactors.
Better understanding of how nature constructs unique molecule may provide insight into eventual
chemoenzymatic/gene thearapy based approaches toward cancer therapy.
|
280 |
Enzymes in thymidylate synthesis in Ureaplasma parvum as medical targets /Lin, Jay, January 2009 (has links) (PDF)
Licenciatavhandling Uppsala : Sveriges lantbruksuniversitet, 2009. / Härtill 2 uppsatser.
|
Page generated in 0.0514 seconds