1 |
Parodontale Parameter in Abhängigkeit vom gingivalen Biotyp - eine klinische Studie / Periodontal parameters in relation to the gingival biotype - a clinical studyRichter, Timo January 2019 (has links) (PDF)
Die Einschätzung des gingivalen Biotypes stellt für den praktizierenden Zahnarzt ein wichtiges Hilfsmittel zur Auswahl der Therapie pathogener Befunde und zur Prognose des Therapieerfolges dar. Ziel der vorliegenden Arbeit war es daher zu untersuchen, ob die Bestimmung des gingivalen Biotypes über die Transluzens einer Parodontalsonde durch die bukkale Gingiva, als eine einfach durchzuführende klinische Untersuchung, von der tatsächlichen Dicke des Weichgewebes abhängt. Darüber hinaus wurde erörtert, ob verschiedene parodontale Parameter eher mit einem dicken oder einem dünnen gingivalem Biotyp vergesellschaftet sind. Zuletzt wurden die Studienteilnehmer auf eine bestehende Relation zwischen dem Biotyp des Zahnfleisches und der Form der Frontzahnkronen des Oberkiefers hin untersucht.
Zu diesem Zweck wurden an 36 Probanden der gingivale Biotyp über die Transluzens einer Parodontalsonde durch die bukkale marginale Gingiva bestimmt. Anschließend wurde die tatsächliche Dicke der Gingiva auf Höhe des gingivalen Sulkus mit einer individualisierten Messlehre ermittelt. Des weiteren wurden gingivale Parameter (Taschentiefe, Breite der keratinisierten Mukosa, Papillenhöhe) erhoben, sowie die Form der Zahnkronen der Schneidezähne im Oberkiefer anhand von Gipsmodellen bestimmt. Die erhobenen Messwerte wurden anschließend auf Unterschiede zwischen den beiden Gruppen untersucht. Um eine Abhängigkeit von der tatsächlich gemessenen Gewebedicke zu erörtern, wurden zwei Extremgruppen aus den Probanden mit den jeweils sechs höchsten, beziehungsweise niedrigsten Messwerten gebildet.
Die statistische Auswertung stellt die Transluzens einer Parodontalsonde durch die bukkale marginale Gingiva als verlässliches Mittel zur Einschätzung des gingivalen Biotyps heraus, wobei anzumerken ist, dass die Sichtbarkeit der Sonde durch die Gingiva nicht ausschließlich von der Gewebedicke beeinflusst wird. Darüber hinaus konnte eine größere Kronenlänge und, äquivalent dazu, eine höhere mesiale Papille für den dicken gingivalen Biotyp dargestellt werden. Bei dem Vergleich der Extremgruppen konnte ausserdem eine signifikant höhere Taschensondierungstiefe und eine breitere befestigte Gingiva für die Gruppe mit einem sehr dicken Gewebe aufgezeigt werden. / The determination of the gingival biotype is an important aid for the dentist to choose the appropriate therapy for pathogenic findings. It represents also a relevant factor for the prognosis of a dental treatment. The aim of the present study was to investigate if the determination of the gingival biotype, by assessing the translucency of a periodontal probe through the buccal gingiva is correlated to the actual thickness of the tissue. In addition several periodontal parameters were analyzed for a relation to a thick or thin gingival biotype. Finally the study population was investigated for a relation of the gingival biotype and the shape of the clinical crown of the incisors in the upper jaw.
For this purpose the gingival biotype was determined at 36 subjects by assessing the translucency of a periodontal probe through the buccal gingiva. Subsequently the true gingival thickness was measured with an individualized caliper at the level of the gingival sulcus. In addition gingival parameters (probing depth, width of the attached mucosa, height oft he papilla) were collected and the shape if the incisal crowns in the upper jaw were analyzed using plaster casts from the subjects. The collected data was evaluated for differences between the two groups. To highlight the dependence oft he true gingival thickness, two extreme groups were generated with the six highest and lowest values for the measured gingival thickness.
The statistical analysis presents the translucency of a periodontal probe through the buccal gingiva as a reliable and easy way to determine the gingival biotype on a subject. However it has to be considered that the visibility oft he instrument is not solely dependent of the tissue thickness. Additionally a higher crown length and equivalent a greater papilla height was accompanied with a thick gingival biotype. Analyzing the two extreme groups a greater probing depth and a wider band of the attached gingiva could be illustrated for the group with a very thick tissue.
|
2 |
PLANT GROWTH REGULATORS AND HERBICIDES FOR MANAGEMENT OF POA ANNUA: IMPACT OF BIOTYPES AND BEHAVIOR OF FLURPRIMIDOL IN TURFGRASS SPECIESWilliams, Alexandra Perseveranda 01 January 2014 (has links)
In 2011, Poa annua L. (Poa) biotypes were collected from greens of two golf courses in Lexington, Kentucky: 1.) The Lexington Country Club (LCC) and 2.) The University Club (UC). The samples were collected based on exhibiting one of two appearances while on the same green: 1.) dark green, with few to no flower heads (dark biotype) or 2.) light green, with numerous flower heads (light biotype). Two PGRs, paclobutrazol and flurprimidol, and two herbicides, bispyribac-sodium and amicarbazone, were applied to the plants both in the field and the greenhouse. Quality ratings were recorded weekly in both the field and greenhouse and grass clippings were collected and measured weekly in the greenhouse. Flurprimidol controlled the dark biotypes and paclobutrazol controlled the light biotypes in the field in 2011. However, only location by treatment interactions were in 2012; flurprimidol, bispyribac-sodium, and amicarbazone controlled the biotypes from the LCC while paclobutrazol controlled the biotypes from UC. In the greenhouse study there was a significant three way interaction between color, location, and treatment for quality. PGRs controlled the light biotypes from LCC and the dark biotypes from UC. Herbicides controlled the light biotypes more than the dark, however, the light biotypes recovered after amicarbazone treatments. PGRs reduced clipping weights of the dark biotypes more than the light and herbicides reduced clipping weights of the light biotypes more than the dark. Both PGRs and herbicides reduced clipping weights of the Poa collected from the LCC more than UC. These results demonstrate both the potential for differential responses between Poa biotypes to PGRs and herbicides and that these differences, like all things about Poa, may be complex. A laboratory experiment was also designed to examine the absorption and potential metabolism of 14C-labeled flurprimidol in creeping bentgrass (Agrostis stolonifera (L.)), bermudagrass (Cynodon dactylon (L.)), Kentucky bluegrass (Poa pratensis (L.)), perennial ryegrass (Lolium perenne (L.)), tall fescue (Festuca arundinacea (Schreb.)), and zoysiagrass (Zoysia japonica (Steud.)) and light and dark Poa biotypes collected from golf greens. Flurprimidol absorption and translocation was greater for warm season grasses than cool season grasses. Only parent flurprimidol was detected in all turf species.
|
3 |
The Effects of Thermal Variation on Metabolic Rates in Sexual and Unisexual Mole SalamandersLangford, Ramsey A. S. 18 December 2012 (has links)
No description available.
|
4 |
Analysis of gene encoding haemolysin A of Vibrio cholerae isolated in VietnamHa, Thi Quyen 07 February 2019 (has links)
Vibrio cholerae is the cholera causing agent, divided into two biotypes, including the classical biotype and ElTor biotype. Both of these biotypes caused cholera epidemics in the world. The classical biotype caused 6th cholera pandemic (from 1921 to 1961), and ElTor biotype caused 7th cholera pandemic (from 1961 to the 70s). Haemolysin A, a hemolytic protein of V. cholerae ElTor biotype, is encoded by the hlyA gene. This gene is often used for analyzing genetic relationship between strains in the same species or between species in the same Vibrio genus. Results of analyzing nucleotide and amino acid sequences of hlyA gene of V. cholerae strain causing cholera in Vietnam (named hlyA.VN) showed that: the hlyA.VN gene sequence was similar to the hlyA gene sequences of V. cholerae strains of the 6thand 7thcholera epidemics. The hlyA gene of the 6th cholera epidemic strain was deficient in 11 nuleotides (this deficiency leading to the loss of 4 amino acids in the haemolysin A protein) comparing to hlyA.VN gene and hlyA gene of the 7th cholera epidemic strain. The results of genetic distance analysis as well as phylogenetic tree construction also confirmed V. cholerae causing cholera in Vietnam was closely relationship to the strains causing cholera pandemics in the world. It is great significance for the surveillance of molecular epidemiology to prevent cholera effectively. / Vibrio cholerae là tác nhân gây bệnh tả, được chia thành hai typ sinh học, đó là typ sinh học cổ điển và typ sinh học ElTor. Cả hai typ này đã từng gây ra các đại dịch tả trên thế giới. Typ sinh học cổ điển đã từng gây ra đại dịch tả lần thứ 6 (từ năm 1921 đến 1961), còn typ sinh học ElTor đã từng gây ra đại dịch tả lần thứ 7 (từ 1961 đến những năm 70). Haemolysin A, một protein có chức năng làm tan máu của V. cholerae typ sinh học ElTor, được mã hóa bởi gen hlyA. Gene này
thường được sử dụng cho các phân tích quan hệ di truyền giữa các chủng trong cùng một loài V. cholerae hay giữa các loài trong cùng một chi Vibrio. Kết quả phân tích trình tự nucleotide và axit amin gen hlyA của chủng V. cholerae gâybệnh ở Việt Nam (hlyA.VN) cho thấy: trình tự gen hlyA.VN có sự tương đồng lớn với trình tự gen hlyA của chủng gây đại dịch tả 6 và 7. Gen hlyA của chủng gây đại dịch tả 6 bị thiếu hụt 11 nuleotide (sự thiếu hụt này dẫn tới sự mất đi 4 axit amin trong phân tử haemolysin A) so với gen hlyA.VN và gene hlyA của chủng gây đại dịch tả 7. Kết quả phân tích khoảng cách di truyền cũng như xây dựng cây phát sinh chủng loại cũng đã khẳng định: chủng gây bệnh ở Việt Nam có quan hệ rất gần với các chủng gây đại dịch tả trên thế giới. Nhận định này có ý nghĩa rất lớn đối với công tác giám sát dịch tễ học phân tử để ngăn chặn bệnh tả hiệu quả.
|
5 |
Different sources of resistance in soybean against soybean aphid biotypesChandran, Predeesh January 1900 (has links)
Master of Science / Department of Entomology / John C. Reese / The soybean aphid, Aphis glycines Matsumura, arrived first to North America during the midst of 2000. It is a very fast spreading insect and causes a high yield loss of above 50% in most of the soybean growing tracts of United States. Another important economic threat is it’s ability to transmit some viruses to soybean. Studies to control this exotic pest started early during the year of its arrival. But a complete integrated pest management (IPM) approach that includes a combination of different control measures has yet to be completely developed. Host plant resistance is one component of integrated pest management and is more sustainable than any other control methods against this insect. In the first study, more than 80 genotypes were screened with two given aphid biotypes, biotype 1 and biotype 2. It was found that the genotypes that were earlier resistant to biotype 1 (K1639, K1642, K1613 K1621, Dowling and Jackson) were susceptible to the new biotype 2 with large populations developing on these genotypes. But we found three new Kansas genotypes that showed resistance only against biotype 1, but not against biotype 2. However, the two of the Michigan genotypes (E06902 and E07906-2) showed resistance to both biotype 1and biotype 2. In second study, the feeding behavior analyses of aphid biotypes were done using the EPG, Electrical penetration graph, technique for a recorded 9 hrs probing time. The resistant and susceptible genotypes show significant differences in their EPG parameters, especially for the sieve element duration in both biotypes. Most of the aphids reached sieve element phase (> 90%) in susceptible genotypes, but only few (<30%) were reached in resistant genotypes. But, no differences were found in any other probing phases between resistant and susceptible genotypes, except the number of potential drops (PDs) in biotype 2. Thus, it is concluded that resistance is largely associated with phloem tissues and there could be some biochemical, physical or morphological factors that affect the stylet penetration in aphids.
|
6 |
Virulence of Mayetiola destructor (Say) field populations in the Great Plains and levanase/inulase-like genes in the Hessian fly genomeCarrera, Sandra Garcés January 1900 (has links)
Doctor of Philosophy / Department of Entomology / Ming-Shun Chen / C. Michael Smith / The Hessian fly, Mayetiola destructor (Say), is a major pest of wheat, and is controlled mainly through deploying fly-resistant wheat cultivars. This study investigated five M. destructor populations collected from Texas, Louisiana, and Oklahoma, where infestation by Hessian fly has been high in recent years. Eight resistance genes including H12, H13, H17, H18, H22, H25, H26, and Hdic, were found to be highly effective against all tested M. destructor populations in this region, conferring resistance to 80% or more of plants containing one of these resistant genes. The frequency of biotypes virulent to resistant genes ranged from 0 to 45%. A logistic regression model was established to predict biotype frequencies based on the correlation between the percentages of susceptible plants obtained in a virulence test. In addition to the virulence test, the log-odds of virulent biotype frequencies were determined by a traditional approach to predict the logistic regression model.
Characterization of a bacterial artificial chromosome (BAC) clone identified a gene encoding a protein with sequence similarity to bacterial levanases. Blast searching with the levanase-like protein identified 14 levanase/inulase-like genes or gene fragments. In this study, we determined the expression levels of these genes in different developmental stages and different tissues of 3-d old larvae of M. destructor. Sequence analysis revealed that six genes encode full length proteins, three were truncated at the 5’ end, and five truncated at the 3’ end. Sequences of putative proteins showed approximately 42% similarities to bacterial levanases or inulases, and 36% similarity to fungal levanases or inulases. No sequence similarities were found with any known animal or plant proteins. Comparative analysis of sequences among 14 levanase/inulase-like genes revealed that positions for intron/exon boundaries are conserved among different genes even though the length of each intron and exon varied among different genes. The expression patterns of the levanase/inulase-like genes were different among developmental stages and larval tissues of M. destructor. Interestingly, three genes presented alternative splicing bands in different developmental stages, and two genes exhibited splicing bands in different tissues of 3 d old M. destructor. This study would be useful for future studies of the characterization and function of levanase/inulase-like genes of these enzymes in plant-insect interactions.
|
7 |
Biotype composition and virulence distribution of wheat curl mite in the North Central United StatesKhalaf, Luaay Kahtan January 1900 (has links)
Doctor of Philosophy / Department of Entomology / C. Michael Smith / The wheat curl mite, Aceria tosichella (Keifer), is an important global pest of bread wheat, Triticum aestivum L. Chronic and often severe reductions of winter wheat yield due to A. tosichella infestations have occurred in North America and all other wheat-production areas for over five decades. Moreover, A. tosichella is the only vector which transmits the three most important wheat viruses in the Great Plains, which are Wheat Streak Mosaic Virus (WSMV), the most economically important wheat virus in North America; Triticum Mosaic Virus (TriMV) and High Plains Wheat Mosaic Virus (HPWMoV). Mite infestation alone causes stunted, chlorotic plants in susceptible wheat varieties. To date, mite resistant wheat cultivars have been the only sufficient method to control A. tosichella. The discovery of new genes for A. tosichella resistance and their introgression into wheat cultivars are essential steps to combat the development of new and/or different A. tosichella biotypes which can develop to overcome resistance genes. Both A. tosichella biotype 1 and 2 exist in U. S. Great Plains wheat producing areas. Elucidating and predicting A. tosichella population composition changes based on climatic and geographic variables is a key to continued effective mite management. Experiments were conducted to: 1) assess A. tosichella virulence in mites collected from 25 sample sites in six states to wheat plants harboring the Cmc2, Cmc3 and Cmc4 mite resistance genes and the Wsm2 WSMV resistance gene in 2014 and 2015, and determine the distribution of WSMV, TriMV and HPWMoV present in mites collected; 2) assess A. tosichella biotype composition using internal transcribed spacer 1 (ITS1) and cytochrome oxidase I (COI) polymorphisms; 3) use generalized additive modeling to capture the spatio-temporal factors contributing to the prevalence of A. tosichella biotypes 1 and 2; and 4) screen Kansas advanced breeding lines for resistance to A. tosichella biotypes 1 and 2.
Results indicated that A. tosichella collected from 92% of the sample area were virulent to susceptible Jagger wheat plants with no Cmc resistance genes; that mites from 36% of the sample area were virulent to the Cmc2 gene, and that mites collected from 24% of sample area were virulent to Cmc3. Mite populations from only 8% of the sample sites exhibited virulence to plants containing Cmc4 + Wsm2 or Cmc4. The WSMV virus was predominant and present in 76% of all mites sampled. HPWMoV and TriMV were less apparent and present in 16% and 8% of all mites sampled, respectively. These results will enable breeders to increase the efficiency of wheat production by releasing wheat varieties containing A. tosichella resistance genes that contribute to reducing virus transmission. Results of spatio-temporal factor modeling provide new, more accurate information about the use of ground-cover and precipitation as key predictors of biotype prevalence and ratio.
Experiments to determine if Kansas State University advanced breeding lines contain A. tosichella resistance found no resistance to biotype 1, resistance to biotype 2 in breeding lines AYN3-37 and AYN3-34; and moderate resistance to biotype 2 in breeding lines AYN2-28 and AYN2-36.
The demonstrated correlation between reduced A. tosichella population size and avirulence; characterization and prediction of the A. tosichella biotype composition; and the identification of new sources of A. tosichella resistance in wheat can help entomologists and wheat breeders increase wheat production efficiency by releasing additional wheat cultivars containing A. tosichella resistance genes.
|
8 |
Tipagem molecular e caracterização do potencial patogênico de linhagens de Yersinia enterocolitica biotipo 1A de origens diversas / Molecular typing and pathogenic potential characterization of Yersinia enterocolitica biotype 1A strains of diverse origins.Campioni, Fábio 30 October 2009 (has links)
Entre as 12 espécies do gênero Yersinia, Yersinia enterocolitica é a mais prevalente como causa de doença em humanos e animais. Sua patogenicidade é relacionada, entre outras características, a seis biotipos: o 1B e os biotipos 2 a 5 comprovadamente patogênicos e o biotipo 1A, considerado como não-patogênico. Entretanto, dados da literatura relatam linhagens do biotipo 1A como sendo os agentes causais de infecções em humanos e animais. O objetivo deste trabalho foi investigar o potencial patogênico e verificar a similaridade genômica de linhagens de Y. enterocolitica biotipo 1A, isoladas de material clínico e não-clínico. Foram estudadas 52 linhagens de Yersinia enterocolitica biotipo 1A isoladas de humanos (11), animais (11), alimentos (15) e ambiente (15), quanto a susceptibilidade a antimicrobianos, comportamento frente a testes fenotípicos relacionados à virulência, resistência a reativos intermediários do oxigênio, invasão a células HEp-2 e Caco-2, presença de genes de virulência por PCR e similaridade genômica por Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR) e Pulsed-field gel electrophoresis (PFGE). Tanto as linhagens clínicas como as não-clínicas apresentaram resistência à ampicilina e à cefalotina. Não foi observada diferença entre linhagens de origem clínica e não-clínica frente aos testes de fermentação da salicina, hidrólise da esculina, atividade da pirazinamidase, reativos intermediários do oxigênio e invasão a células HEp-2. Entretanto, linhagens de origem não-clínica foram mais invasivas a células Caco-2 do que as de origem clínica. Oito dos 11 genes de virulência pesquisados foram encontrados. Os genes ystB, hreP e fepD foram mais freqüentemente detectados em linhagens de origem clínica. Ao contrário, os genes myfA, fepA, fes e tccC apresentaram-se mais freqüentes nas linhagens de origem não-clínica. Entretanto, a diferença na freqüência de tais genes não foi estatisticamente significativa entre linhagens clínicas e não-clínicas. O gene inv foi detectado em todas as linhagens estudadas, entretanto, os genes ail, ystA e virF não foram detectados em nenhuma das 52 linhagens. O dendrograma de similaridade genômica consenso das técnicas de ERIC-PCR e PFGE, permitiu a visualização de dois grupos (A e B). Foi observada uma alta similaridade genômica (>63%) entre quase todas as linhagens isoladas de humanos e animais, bem como uma alta similaridade genômica para a maioria das linhagens de origem clínica e não-clínica (>58%). O índice de discriminação de ERIC-PCR foi 0,98, e o de PFGE foi 0,99. Entre as linhagens do biotipo 1A estudadas, não foi observada diferença entre o potencial patogênico de linhagens de origem clínica e não-clínica frente aos testes fenotípicos realizados e prevalência de genes de virulência pesquisados. A exceção foi o teste de invasão a células Caco-2, onde as linhagens não-clínicas foram mais invasivas. As técnicas de ERIC-PCR e PFGE discriminaram similarmente as linhagens estudadas. A alta similaridade genômica entre as linhagens de origem clínica e não-clínica evidencia os animais como sendo importantes reservatórios de Y. enterocolitica biotipo 1A e sugere que isolados de ambiente e alimentos tem sido fonte de contaminação de humanos e animais. / Among the 12 species of the genus Yersinia, Yersinia enterocolitica is the most prevalent cause of illness in humans and animals. Among other characteristics, its patogenicity is related to six biotypes: 1B and 2 to 5 considered pathogenic and the 1A biotype considered non-pathogenic. Despite being defined as non-pathogenic, literature has been shown that biotype 1A strains may be the etiological agents of infections in humans and animals. The aim of this work was to investigate the pathogenic potential and to verify the genomic similarity of Y. enterocolitica biotype 1A isolated from clinical and non-clinical sources. Fifty-two strains of Y. enterocolitica biotype 1A isolated from humans (11), animals (11), food (15), and environment (15) were analyzed regarding their susceptibility to antimicrobials, behavior against phenotypic tests related to virulence, resistance to oxygen intermediate reactives, invasion to HEp-2 and Caco-2 cells, presence of virulence genes by PCR, and genomic similarity by Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR) and Pulsed-field gel electrophoresis (PFGE). Both clinical and non-clinical strains showed resistance to ampicillin and cephalothin. It was not observed any difference in the pathogenic potential between clinical and non-clinical strains face of the following tests: salicine fermentation, esculin hydrolysis, pirazinamidase activity, oxygen intermediate reactives and HEp-2 cell invasion assay. On the other hand, the non-clinical strains were more invasive to Caco-2 cells than the clinical ones. Eight of 11 studied virulence genes were found. Genes ystB, hreP and fepD were more often detected in clinical strains. In contrast, myfA, fepA, fes and tccC were presented more frequently in non-clinical strains. However, the frequency difference of those genes was not statistically significant between clinical and non-clinical strains. The inv gene was detected in all the strains studied; but no ail, ystA, and virF genes were found in any of the 52 strains. ERIC-PCR and PFGE dendogram allowed the visualization of two groups named A and B. It was observed a high genomic similarity among almost all human and animal isolated strains (>63%), as well as a high genomic similarity between the clinical and non-clinical strains (>58%). The discriminatory index for ERIC-PCR was 0.98 and for PFGE was 0.99. Among biotype 1A strains no difference was observed between the pathogenic potential of clinical and non-clinical strains face to the phenotype tests employed, and regarding the prevalence of the studied virulence genes. The exception was the Caco-2 cells invasion assay where non-clinical strains were more invasive., ERIC-PCR and PFGE discriminated the studied strains similarly. The high genomic similarity between the clinical and non-clinical strains gives evidence that animals constitute important reservoirs of Y.enterocolitica biotype 1A and suggests that environmental and food isolates have been the source of human and animal infections.
|
9 |
Patogenicidade e regulação hormonal na interação Moniliophthora perniciosa x Solanum lycopersicum / Pathogenicity and hormonal regulation in the Moniliophthora perniciosa x Solanum lycopersicum interactionCosta, Juliana Leles 24 August 2017 (has links)
Moniliophthora perniciosa é o agente causal da doença vassoura-de-bruxa em cacaueiro (Theobroma cacao). Os sintomas da doença compreendem perda de dominância apical, inchamento e excesso de brotações em ramos novos, reversão de meristemas florais em vegetativos, partenocarpia e lesões necróticas em frutos, sugerindo a ocorrência de alterações hormonais no hospedeiro. A disponibilidade de isolados do biótipo-S capazes de infectar o tomateiro, permitiu a utilização da cultivar miniatura \'Micro-Tom\' (MT) como um modelo para estudo da interação Moniliophthora perniciosa x Solanum lycopersicum. Além de provocar sintomas característicos no MT, a disponibilidade de mutantes e linhas transgênicas introgredidos em MT, com alterações que afetam o metabolismo e sensibilidade hormonal, permitem investigar o papel dos hormônios vegetais no desenvolvimento dos sintomas. Inicialmente, foi avaliada a agressividade de três isolados do biótipo-S no MT, sendo que um isolado de Tiradentes apresentou maior agressividade, com maior incidência dos sintomas, maior engrossamento do caule, redução na altura das plantas, aumento no número de lóculos nos frutos e redução na biomassa radicular. Mutantes com alterações na percepção para auxina (diageotropica e entire) e uma linha transgênica expressando uma citocinina oxidase de Arabidopsis (35S::AtCKX2) diferiram para o engrossamento do caule e distribuição do número de lóculos nos frutos em relação ao MT. A linha transgênica 35S::AtCKX2 diferiu significativamente de MT com menor incidência de infecção. O engrossamento do caule associa-se ao aumento na área do córtex e, principalmente do xilema e floema. A aplicação exógena de citocinina sintética benzil-adenina (BA) e da auxina sintética ácido naftaleno acético (ANA) em MT evocam sintomas similares aos de plantas infectadas com M. perniciosa. Linhas transgênicas repórter de sinalização por citocinina (ARR5::GUS) ou auxina (DR5::GUS) indicaram sinalização diferencial por citocinina a 24 h e 36 h após inoculação (HAI) e 48 HAI por auxina. A infecção por M. perniciosa aumentou os níveis de ácido jasmônico, ácido salicílico (AS) e auxina em MT entre 5 d a 30 DAI, com maior incremento aos 5 DAI, enquanto que o nível de ácido abscísico aumentou aos 20 d e 30 DAI, e AS foi o único detectado em micélio dicariótico do biótipo-S. Genes de biossíntese de citocinina (IPT), ativação (LOG), degradação (CKX) e resposta à citocinina (ARRs e CRF) e auxina (AUX/IAA, ARFs, SAUR e GH3) foram induzidos em MT inoculado de 12 h a 5 DAI, mas com maior acúmulo de transcritos aos 30 DAI. M. perniciosa induziu maior expressão desses genes citados e de biossíntese auxina, nos momentos iniciais da interação (12 h a 5 DAI) em 35S::AtCKX2 do que no MT. O efeito da infecção em aumentar o número de lóculos nos frutos parece ser independente ou downstream a mutação fasciated, Mouse ears e ovate. A mutação Lanceolate parece ter um papel na redução do efeito da infecção em aumentar o número de lóculos. Os resultados obtidos sugerem que a infecção pelo M. perniciosa em MT altere os níveis/sinalização dos hormônios vegetais, principalmente auxina e citocinina, provocando o engrossamento do caule (aumento no xilema, floema e córtex), redução no crescimento e na biomassa radicular e aumento no número de lóculos nos frutos / Moniliophthora pernicisa is the causal agent of witches\' broom disease in cocoa (Theobroma cacao). The disease symptoms comprise loss of apical dominance, thickening and proliferation of axillary shoots, shift from inflorescence into vegetative meristem, parthernocarpy and necrotic lesions on fruits, suggesting a host hormonal imbalance. The availability of an isolated of S-biotype M. perniciosa, which colonizes tomato, enabled the utilization of the miniature tomato (Solanum lycopersicum) cultivar \'Micro-Tom\' (MT) as a suitable model to study the pathosystem M. perniciosa x S. lycopersicum. In addition to the characteristic symptoms of the infection in MT, the availability of mutants and transgenic lines introgessed into MT, with changes in plant metabolism and hormonal sensitivity, enable the investigation of the role of plant hormones in the development of symptoms. Initially, we evaluated the aggressiveness of three S-biotype M. perniciosa isolates. The isolate \'Tiradentes\' showed greater aggressiveness infecting MT, with higher plant infection incidence, greater stem thickening, reduction in plant height, increase in fruit locule number and reduction in root dry weight. Mutants with altered auxin perception (diageotropica e entire) and the transgenic line expressing a cytokinin oxidase gene of arabidopsis (35S::AtCKX2) differed in stem thickening and fruit locule number distribution, as compared to MT. The transgenic line 35S::AtCKX2 differed significantly from MT, showing lower incidence of infection. The thickening of the stem may be related with an increase in area of the cortex, especially xylem and phloem. The exogenous application of synthetic cytokinin benzyl adenine (BA) and auxin naphthalene acetic acid (NAA) in MT induces similar symptoms to plants infected with M. perniciosa. Cytokinin (ARR5::GUS) and auxin (DR5::GUS) signaling reporter transgenic lines revealed differential cytokinin signaling 24 h e 36 h hours after inoculation (HAI) and differential auxin signaling in 48 HAI. Infection of MT by M. perniciosa increased the content of JA, SA and auxin during the development of symptoms from 5 d to 30 DAI, with greater increase at an early stage of symptoms development (5 days after inoculation - DAI), whereas abcisic acid content increased in 20 and 30 DAI, and only AS was detected in dicariotic mycelium of the S-biotype M. perniciosa. Cytokinin biosynthesis (IPT), activating (LOG), and breakdown (CKX) genes and response to cytokynin genes (ARRs e CRF) and auxin (AUX/IAA, ARFs, SAUR e GH3) were induced in MT infected in 12 h a 5 DAI, with greater accumulation of transcripts in 30 DAI. M. perniciosa induced higher levels of IPT, LOG, CKX, ARRs, and CRF genes and auxin biosynthesis genes at an ealry stage of infection (12 h a 5 DAI) in 35S::AtCKX2, as compared to MT. The effect of the infection on increasing fruit locule number seems to be independent or downstream fasciated, Mouse ears and ovate mutation. Lanceolate mutation seems to play a role in reducing M. perniciosa ability of increasing fruit locule number. The results suggest infection of MT by S-biotpye M. perniciosa alters levels/signaling of the hormones, especially auxin and cytokinin, inducing stem thickening (increasing xylem, phloem and cortex), reduction in plant height, root dry weight and increase in fruit locule number
|
10 |
Aggressiveness and identification of tylenchulus semipenetrans biotype in South AfricaMatabane, Raisebe Vivian January 2013 (has links)
Thesis (M.Sc. (Plant protection)) --University of Limpopo, 2013. / Studies were initiated to investigate (1) the aggressiveness of the citrus nematode (Tylenchulus semipenetrans Cobb) isolates from two provinces in South Africa (2 experiements ) and (2) the biotype of T. semipenetrans in South Africa. In the aggressive study, isolates from Limpopo and Mpumalanga Provinces were used on Carrizo citrange (Citrus sinensis × Poncirus trifoliata) and rough lemon (Citrus jambhiri) seedling rootstocks under greenhouse conditions (18 experiements). Each seedling was inoculated with 0, 10 000, 20 000, 30 000 and 40 000 J2s of T. semipenetrans isolates, which were arranged in a randomised complete block design, with six replications. At 120 days, the reproductive factor of T. semipenetrans isolate from Mpumalanga Province was significantly higher than that from Limpopo Province. Similarly, due to its higher relative impact on the reproductive factor values, the Mpumalanga isolate reduced plant growth variables more than the Limpopo isolate. Consequently, the Mpumalanga isolate was viewed as being more aggressive than the Limpopo isolate, suggesting that there might be genetic variability and/or adaptation in populations from the two locations. A national study, comprising T. semipenetrans isolates from 18 citrus-producing district municipalities in South Africa was then initiated under greenhouse conditions using isolates from each district – for a total of 18 separate experiments. Three differential hosts, viz. rough lemon, P. trifoliata and olive (Olea europaea), served as treatments, arranged in a randomised complete block design, with 15 replications. Initially, an orchard was randomly selected in each of the six citrus-producing provinces, viz. Eastern Cape, KwaZulu Natal, Limpopo, Mpumalanga, North West and Western Cape. Three-month old differential host seedlings were inoculated with approximately 10 000 J2s of T. semipenetrans and allowed to establish and grow under greenhouse conditions. At 120 days, penetration indices and standardised reproductive potentials/g roots demonstrated that T. semipenetrans failed to reproduce and develop on olive, but reproduced and developed on the other two hosts. Using T. semipenetrans biotype classification system, findings suggested that the biotype in citrus-producing district municipalities was Poncirus biotype. This biotype reproduces on P. trifoliata and hybrid rootstocks, which therefore, suggested that trifoliate orange and its hybrid rootstocks were not suitable for use in managing population nematode densities of T. semipenetrans in South Africa. In conclusion, results of this study demonstrated that the South African T. semipenetrans biotype was Poncirus, which suggested different management decisions and strategies for the citrus industry with regard to the management of this nematode. / By National Research Foundation, National Department of Agriculture, Forestry and Fisheries and the Land Bank Chair of Agriculture − University of Limpopo,
|
Page generated in 0.0483 seconds